CC..png    

16plus.png

Legal and postal addresses of the founder and publisher: Northern (Arctic) Federal University named after M.V. Lomonosov, Naberezhnaya Severnoy Dviny, 17, Arkhangelsk, 163002, Russian Federation

Editorial office address: Journal of Medical and Biological Research, 56 ul. Uritskogo, Arkhangelsk

Phone: (818-2) 21-61-00, ext.18-20

E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Neurophysiological and Psychophysiological Characteristics of Esports Players During Competitions (Review). P. 379–392

Версия для печати

Section: Review articles

Download (pdf, 0.5MB )

UDC

[577.2+796.093.1]:004.946

DOI

10.37482/2687-1491-Z255

Authors

Vasiliy F. Pyatin* ORCID: https://orcid.org/0000-0002-9310-9413
Yuliya V. Myakisheva* ORCID: https://orcid.org/0000-0003-0947-511X
Andrey F. Pavlov* ORCID: https://orcid.org/0000-0002-0614-7914
Anastasia P. Bocharova* ORCID: https://orcid.org/0009-0001-1738-6654

*Samara State Medical University (Samara, Russia)

Abstract

In recent years, esports has evolved into a global socio-economic and cultural phenomenon, officially recognized as a sport in a number of countries. Modern disciplines place complex demands on players, including quick sensorimotor reactions, sustained attention, instant decision making, and team coordination. Unlike traditional sports, esports relies primarily on cognitive and psychophysiological resources, as well as the ability to maintain an optimal level of nervous system activation over extended periods with minimal motor activity. The purpose of the study was to systematize and critically analyse current data on the neurophysiological and psychophysiological characteristics of esports players during competitions. The review was conducted as a narrative analysis with elements of systematization of research published between 2007 and 2024. Literature search was performed in international and Russian scientific databases. Combinations of keywords in English and Russian were used. A total of 48 studies meeting the inclusion and exclusion criteria were analysed. The neurophysiological profile of esports players is characterized by the modulation of alpha and theta EEG rhythms, optimization of event-related potential parameters, enhanced functional integration of the fronto-parietal and parieto-occipital networks, as well as structural changes in the white matter that improve information transmission efficiency. The psychophysiological features of esports players include high resting heart rate variability, more economical sympathetic activation, faster recovery after exertion, optimized hormonal reactivity, and resilience to social and competitive stress. The identified markers can serve as a basis for developing comprehensive readiness monitoring panels, objective selection criteria and personalized training protocols.

Keywords

esports players, neurophysiological profile, psychophysiological characteristics, cognitive functions, sustained attention, stress adaptation

References

  1. Giakoni-Ramírez F., Merellano-Navarro E., Duclos-Bastías D. Professional Esports Players: Motivation and Physical Activity Levels. Int. J. Environ. Res. Public Health, 2022, vol. 19, no. 4. Art. no. 2256. https://doi.org/10.3390/ijerph19042256
  2. Pedraza-Ramirez I., Musculus L., Raab M., Laborde S. Setting the Scientific Stage for Esports Psychology: A Systematic Review. Int. Rev. Sport Exerc. Psychol., 2020, vol. 13, no. 1, pp. 319–352. https://doi.org/10.1080/1750984X.2020.1723122
  3. Rudolf K., Bickmann P., Froböse I., Tholl C., Wechsler K., Grieben C. Demographics and Health Behavior of Video Game and Esports Players in Germany: The Esports Study 2019. Int. J. Environ. Res. Public Health, 2020, vol. 17, no. 6. Art. no. 1870. http://dx.doi.org/10.3390/ijerph17061870
  4. Föcker J., Mortazavi M., Khoe W., Hillyard S.A., Bavelier D. Neural Correlates of Enhanced Visual Attention Control in Action Video Game Players: An Event-Related Potential Study. J. Cogn. Neurosci., 2019, vol. 31, no. 3, pp. 377–389. https://doi.org/10.1162/jocn_a_01230
  5. Wechsler K., Bickmann P., Rudolf K., Tholl C., Froböse I., Grieben C. Comparison of Multiple Object Tracking Performance Between Professional and Amateur Esport Players as Well as Traditional Sportsmen. Int. J. Esports Res., 2021, vol. 1, no. 1, pp. 17–33. https://doi.org/10.4018/IJER.20210101.oa2
  6. Ding Y., Hu X., Li J., Ye J., Wang F., Zhang D. What Makes a Champion: The Behavioral and Neural Correlates of Expertise in Multiplayer Online Battle Arena Games. Int. J. Hum.-Comput. Interact., 2018, vol. 34. no. 8, pp. 682–694. http://dx.doi.org/10.1080/10447318.2018.1461761
  7. Bavelier D., Green C.S. Enhancing Attentional Control: Lessons from Action Video Games. Neuron, 2019, vol. 104, no. 1, pp. 147–163. http://dx.doi.org/10.1016/j.neuron.2019.09.031
  8. Bavelier D., Bediou B., Green C.S. Expertise and Generalization: Lessons from Action Video Games. Curr. Opin. Behav. Sci., 2018, vol. 20, pp. 169–173. http://dx.doi.org/10.1016/j.cobeha.2018.01.012
  9. Palaus M., Marron E.M., Viejo-Sobera R., Redolar-Ripoll D. Neural Basis of Video Gaming: A Systematic Review. Front. Hum. Neurosci., 2017, vol. 11. Art. no. 248. https://doi.org/10.3389/fnhum.2017.00248
  10. Dobrowolsky P., Hanusz K., Sobczyk B., Skorko M., Wiatrow A. Cognitive Enhancement in Video Game Players: The Role of the Video Game Genre. Comput. Hum. Behav., 2015, vol. 44, pp. 59–63. http://dx.doi.org/10.1016/j.chb.2014.11.051
  11. Colzato L.S., van Leeuwen P.J.A., van den Wildenberg W.P.M., Hommel B. DOOM’d to Switch: Superior Cognitive Flexibility in Players of First Person Shooter Games. Front. Psychol., 2010, vol. 1. Art. no. 8. https://doi.org/10.3389/fpsyg.2010.00008
  12. Colzato L.S., van den Wildenberg W.P.M., Zmigrod S., Hommel B. Action Video Gaming and Cognitive Control: Playing First Person Shooter Games Is Associated with Improvement in Working Memory but Not Action Inhibition. Psychol. Res., 2013, vol. 77, no. 2, pp. 234–239. https://doi.org/10.1007/s00426-012-0415-2
  13. Bisoglio J., Michaels T.I., Mervis J.E., Ashinoff B.K. Cognitive Enhancement Through Action Video Game Training: Great Expectations Require Greater Evidence. Front. Psychol., 2014, vol. 5. Art. no. 136. https://doi.org/10.3389/fpsyg.2014.00136
  14. Huang H., Cheng C. The Benefits of Video Games on Brain Cognitive Function: A Systematic Review of Functional Magnetic Resonance Imaging Studies. Appl. Sci., 2022, vol. 12, no. 11. Art. no. 5561. http://dx.doi.org/10.3390/app12115561
  15. Nagorsky E., Wiemeyer J. The Structure of Performance and Training in Esports. PLoS One, 2020, vol. 15, no. 8. Art. no. e0237584. https://doi.org/10.1371/journal.pone.0237584
  16. Sergeev S.F., Timokhov V.V., Baskakov A.S., Tsinevich R.K. Sravnitel’nyy analiz professional’no-vazhnykh kachestv kibersportsmenov bazovykh igrovykh distsiplin [Comparative Analysis of Professionally Important Qualities of e-Sports Players in Basic Game Disciplines]. Oboznov A.A., Zhuravlev A.L. (eds.). Aktual’nye problemy psikhologii truda, inzhenernoy psikhologii i ergonomiki [Current Issues of Work Psychology, Engineering Psychology and Ergonomics]. Moscow, 2020, pp. 316–337. https://doi.org/10.38098/ergo.2020.018
  17. Pluss M.A., Novak A.R., Bennett K.J.M., Panchuk D., Coutts A.J., Fransen J. The Relationship Between the Quantity of Practice and In-Game Performance During Practice with Tournament Performance in Esports: An Eight-Week Study. J. Sport Exerc. Sci., 2021, vol. 5, no. 1, pp. 69–76. https://doi.org/10.36905/jses.2021.01.09
  18. Weinstein A., Lejoyeux M. Neurobiological Mechanisms Underlying Internet Gaming Disorder. Dialogues Clin. Neurosci., 2022, vol. 22, no. 2, pp. 113–126. https://doi.org/10.31887/dcns.2020.22.2/aweinstein
  19. Burleigh T.L., Griffiths M.D., Sumich A., Wang G.Y., Kuss D.J. Gaming Disorder and Internet Addiction: A Systematic Review of Resting-State EEG Studies. Addict. Behav., 2020, vol. 107. Art. no. 106429. https://doi.org/10.1016/j.addbeh.2020.106429
  20. Pérez-Rubio C., González J., Garcés de los Fayos E.J. Personalidad y burnout en jugadores profesionales de e-sports. Cuad. psicol. deporte, 2017, vol. 17, no. 1, pp. 41–50.
  21. Almanza-Sepúlveda M.L., Llamas Alonso J., Guevara M.A., Hernández-González M. Increased Prefrontal-Parietal EEG Gamma Band Correlation During Motor Imagery in Expert Video Game Players. Actual. psicol., 2014, vol. 28, no. 117, pp. 27–36. http://dx.doi.org/10.15517/ap.v28i117.14095
  22. Del Percio C., Brancucci A., Vecchio F., Marzano N., Pirritano M., Meccariello E., Padoa S., Mascia A., Giallonardo A.T., Aschieri P., Lino A., Palma E., Fiore A., Di Ciolo E., Babiloni C., Eusebi F. Visual Event-Related Potentials in Elite and Amateur Athletes. Brain Res. Bull., 2007, vol. 74, no. 1–3, pp. 104–112. http://dx.doi.org/10.1016/j.brainresbull.2007.05.011
  23. Kovbasiuk A., Lewandowska P., Brzezicka A., Kowalczyk-Grębska N. Neuroanatomical Predictors of Complex Skill Acquisition During Video Game Training. Front. Neurosci., 2022, vol. 16. Art. no. 834954. http://dx.doi.org/10.3389/fnins.2022.834954
  24. Kowalczyk N., Shi F., Magnuski M., Skorko M., Dobrowolski P., Kossowski B., Marchewka A., Bielecki M., Kossut M., Brzezicka A. Real-Time Strategy Video Game Experience and Structural Connectivity – a Diffusion Tensor Imaging Study. Hum. Brain Mapp., 2018, vol. 39, no. 9, pp. 3742–3758. http://dx.doi.org/10.1002/hbm.24208
  25. Lewandowska P., Jakubowska N., Hryniewicz N., Prusinowski R., Kossowski B., Brzezicka A., Kowalczyk-Grębska N. Association Between Real-Time Strategy Video Game Learning Outcomes and Pre-Training Brain White Matter Structure: Preliminary Study. Sci. Rep., 2022, vol. 12, no. 1. Art. no. 20741. http://dx.doi.org/10.1038/s41598-022-25099-0
  26. Coronel-Oliveros C., Medel V., Orellana S., Rodiño J., Lehue F., Cruzat J., Tagliazucchi E., Brzezicka A., Orio P., Kowalczyk-Grębska N., Ibáñez A. Gaming Expertise Induces Meso-Scale Brain Plasticity and Efficiency Mechanisms as Revealed by Whole-Brain Modeling. NeuroImage, 2024, vol. 293. Art. no. 120633. https://doi.org/10.1016/j.neuroimage.2024.120633
  27. Burns K.G., Fairclough S.H. Use of Auditory Event-Related Potentials to Measure Immersion During a Computer Game. Int. J. Hum.-Comput. Stud., 2015, vol. 73, pp. 107–114. https://doi.org/10.1016/j.ijhcs.2014.09.002
  28. Allison B.Z., Polich J. Workload Assessment of Computer Gaming Using a Single-Stimulus Event-Related Potential Paradigm. Biol. Psychol., 2008, vol. 77, no. 3, pp. 277–283. https://doi.org/10.1016/j.biopsycho.2007.10.014
  29. Cheng X., Yan Y., Hu T., Lv Y., Zeng Y. A Review of the Effect of the Light Environment of the VDT Workspace on the “Learning to Learn” Effect of Video Game Training. Front. Neurosci., 2023, vol. 17. Art. no. 1093602. http://dx.doi.org/10.3389/fnins.2023.1093602
  30. Tosoni A., Capotosto P., Baldassarre A., Spadone S., Sestieri C. Neuroimaging Evidence Supporting a Dual-Network Architecture for the Control of Visuospatial Attention in the Human Brain: A Mini Review. Front. Hum. Neurosci., 2023, vol. 17. Art. no. 1250096. https://doi.org/10.3389/fnhum.2023.1250096
  31. Rózsa S., Hargitai R., Láng A., Osváth A., Hupuczi E., Tamás I., Kállai J. Measuring Immersion, Involvement, and Attention Focusing Tendencies in the Mediated Environment: The Applicability of the Immersive Tendencies Questionnaire. Front. Psychol., 2022, vol. 13. Art. no. 93195. https://doi.org/10.3389/fpsyg.2022.931955
  32. Irak M., Soylu C., Sakman Ö.K., Turan G. ERP Correlates of Working Memory Load in Excessive Video Game Players. Bostan B. (ed.). Game User Experience and Player-Centered Design. Cham, 2020, pp. 3–20.
  33. Behnke M., Gross J.J., Kaczmarek L.D. The Role of Emotions in Esports Performance. Emotion, 2020, vol. 22, no. 5, pp. 1059–1070. https://doi.org/10.1037/emo0000903
  34. Trotter M.G., Coulter T.J., Davis P.A., Poulus D.R., Polman R. Social Support, Self-Regulation, and Psychological Skill Use in е-Athletes. Front. Psychol., 2021, vol. 12. Art. no. 722030. http://dx.doi.org/10.3389/fpsyg.202.1722030
  35. Bonilla Gorrindo I., Chamorro A., Ventura C. Psychological Skills in Esports: Qualitative Study in Individual and Team Players. Aloma, 2022, vol. 40, no. 1, pp. 35–41. http://dx.doi.org/10.51698/aloma.2022.40.1.36-41
  36. Adinolf S., Turkay S. Toxic Behaviors in Esports Games: Player Perceptions and Coping Strategies. Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play. New York, 2018, pp. 365–372. http://dx.doi.org/10.1145/3270316.3271545
  37. He E.J., Yuan H., Yang L., Sheikholeslami C., He B. EEG Spatio-Spectral Mapping During Video Game Play. 2008 International Conference on Information Technology and Applications in Biomedicine. Shenzhen, 2008, pp. 346–348. https://doi.org/10.1109/ITAB.2008.4570658
  38. Giaconi-Ramírez F., Duclos-Bastías D., Yáñez-Sepúlveda R. Professional Esports Players Are Not Obese: Body Composition Analysis Based on Years of Experience. Int. J. Morphol., 2021, vol. 39, no. 4, pp. 1081–1087. https://doi.org/10.4067/S0717-95022021000401081
  39. Behnke M., Stefanczyk M.M., Żurek G., Sorokowski P. Esports Players Are Less Extroverted and Conscientious Than Athletes. Cyberpsychol. Behav. Soc. Netw., 2023, vol. 26, no. 1, pp. 50–56. http://dx.doi.org/10.1089/cyber.2022.0067
  40. Vaamonde A.G.-N., Chirivella E.C. Perfil profesional del psicólogo/a del deporte experto/a en esports. Rev. psicol. apl. deporte ejerc. fis., 2020, vol. 5, no. 2. Art. no. e13. https://doi.org/10.5093/rpadef2020a9
  41. Himmelstein D., Liu Y., Shapiro J.L. An Exploration of Mental Skills Among Competitive League of Legend Players. IJGCMS, 2017, vol. 9, no. 2, pp. 1–21. https://doi.org/10.4018/IJGCMS.2017040101
  42. Fanfarelli J.R. Expertise in Professional Overwatch Play. IJGCMS, 2018, vol. 10, no. 1, pp. 1–22. https://doi.org/10.4018/IJGCMS.2018010101
  43. Zhong Y., Guo K., Su J., Chu S.K.W. The Impact of Esports Participation on the Development of 21st Century Skills in Youth: A Systematic Review. Comput. Educ., 2022, vol. 191, no. 8. Art. no. 104640. http://dx.doi.org/10.1016/j.compedu.2022.104640
  44. Lynn C.W., Bassett D.S. The Physics of Brain Network Structure, Function and Control. Nat. Rev. Phys., 2019, vol. 1, pp. 318–332. https://doi.org/10.1038/s42254-019-0040-8
  45. Global Games Market Report: The VR & Metaverse Edition. Newzoo, 2021. 38 p. Available at: https://investgame.net/wp-content/uploads/2025/03/Newzoo_Metaverse.pdf (accessed: 5 September 2024).
  46. Ibanez A. The Mind’s Golden Cage and Cognition in the Wild. Trends Cogn. Sci., 2022, vol. 26, no. 12, pp. 1031–1034. https://doi.org/10.1016/j.tics.2022.07.008
  47. Landenberger T., de Oliviera Cardoso N., de Oliveira C.R., de Lima Argimon I.I. Instruments for Measuring Cognitive Reserve: A Systematic Review. Psicol. teor. prática, 2019, vol. 21, no. 2, pp. 58–74. https://doi.org/10.5935/1980-6906/psicologia.v21n2p58-74
  48. Hussenoeder F., Riedel-Heller S., Conrad I., Rodriguez F.S. Concepts of Mental Demands at Work That Protect Against Cognitive Decline and Dementia: A Systematic Review. Am. J. Health Promot., 2019, vol. 33, no. 8, pp. 1200–1208. http://dx.doi.org/10.1177/0890117119861309



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
obl_les2023.jpg 

Arctic and North  

AiS.jpg

Продолжая просмотр сайта, я соглашаюсь с использованием файлов cookie владельцем сайта в соответствии с Политикой в отношении файлов cookie, в том числе на передачу данных, указанных в Политике, третьим лицам (статистическим службам сети Интернет).