CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Use of Neural Network System for Diagnosing Attention Deficit Hyperactivity Disorder. С. 48–54.

Версия для печати

Section:

Download (pdf, 2.3MB )

UDC

61:57-07:004.9

Authors

Reznichenko Natalya Sergeevna, Postgraduate Student, Krasnoyarsk State Pedagogical University named after V.P. Astafyev (Krasnoyarsk, Russia) 

Shilov Sergey Nikolaevich, Krasnoyarsk State Pedagogical University named after V.P. Astafyev (Krasnoyarsk, Russia)

Abstract

The paper is devoted to the automation of biomedical diagnosing. Nowadays, medical and psychological practice needs more than just the standard set of statistical methods of data processing. Thus, the theory of neural networks comes to the forefront, as well as its application for scientific research automation and for solving applied problems. The paper presents the results of an experimental study on the application of neural network approach in diagnosing attention deficit hyperactivity disorder. Introduction of an expert neural network complex has made it possible to substantially improve the efficiency of diagnosing brain disorders.

Keywords

neural network forecasting, attention deficit hyperactivity disorder, neural networks.

References

  1. Artyukhin V.V. Neyrosetevaya sistema diagnostiki virusnogo gepatita: avtoref. dis. … kand. tekhn. nauk [Neural Network System for Diagnosing Viral Hepatitis: Cand. Tech. Sci. Diss. Abs.]. Penza, 2007. 22 p. 
  2. Berebin M.A., Pashkov S.V. Opyt primeneniya neyrosetevykh modeley v tselyakh prognoza psikhicheskoy dezadaptatsii [The Use of Neural Network Models to Predict Psychological Maladjustment]. Vestnik YuUrGU, 2006, no. 14, pp. 41–45. 
  3. Komarovskikh E.N., Lanin S.N., Batunin V.M., et al. Vozmozhnost’ diagnostiki pervichnoy otkrytougol’noy glaukomy iskusstvennymi neyronnymi setyami [Possibility of Diagnosing Primary Open-Angle Glaucoma by Artificial Neural Networks]. Glaukoma. Glaukoma na rubezhe tysyacheletiy. Itogi i perspektivy: sb. nauch. tr. [Glaucoma. Glaucoma at the Turn of Millennia. Results and Prospects: Collected Papers]. Moscow, 1999, pp. 72–74. 
  4. Gorban’ A.N., Rossiev D.A. Neyronnye seti na personal’nom komp’yutere [Neural Networks in a Personal Computer]. Novosibirsk, 1996. 276 p. 
  5. Gribanov A.V., Dzhos Yu.S. O strategicheskikh napravleniyakh mediko-biologicheskikh issledovaniy [Strategic Areas of Medical and Biological Research]. Vestnik Severnogo (Arkticheskogo) federalnogo universiteta. Ser.: Medikobiologicheskie nauki, 2013, no. 1, pp. 10–18. 
  6. Dubynin I.A. O nekotorykh teoreticheskikh i prakticheskikh aspektakh primeneniya iskusstvennykh neyronnykh setey dlya obrabotki psikhologicheskikh dannykh [Some Theoretical and Practical Aspects of the Use of Artificial Neural Networks for Psychological Data Processing]. Laboratory of Mathematical Models in Psychology and Pedagogy MGPPU. 2006. 58 p. 
  7. Zavadenko N.N. Shkol’naya dezadaptatsiya pri sindrome defitsita vnimaniya s giperaktivnost’yu i disleksii: diagnostika i korrektsiya [School Disadaptation in Attention-Deficit Hyperactivity Disorder and Dyslexia: Diagnosis and Correction]. Kachestvo zhizni. Meditsina, 2008, no. 1, pp. 34–42. 
  8. Bozhenko V.K., Sotnikov V.M., Sergeev I.E., Shishkin A.M. Ispol’zovanie mnogoparametricheskikh metodov analiza laboratornykh pokazateley krovi dlya polucheniya diagnosticheskoy informatsii v eksperimental’noy i klinicheskoy onkologii [Using Multivariable Methods to Analyze Laboratory Blood Values for Diagnostic Information in Experimental and Clinical Oncology]. Vestnik Rossiyskogo nauchnogo tsentra rentgenoradiologii, 2004, no. 3, pp. 27–32. 
  9. Istomina T.V., Istomin B.A. Primenenie neyrosetevykh tekhnologiy dlya analiza elektrokardiosignala [Application of Neural Technologies for Electrocardiosignal Analysis]. Neyrokomp’yutery, 2010, no. 11, pp. 11–17. 
  10. Pankov M.N., Gribanov A.V., Deputat I.S., Startseva L.F., Nekhoroshkova A.N. Kliniko-fiziologicheskie proyavleniya sindroma defitsita vnimaniya s giperaktivnost’yu u detey (obzor literatury) [Clinical and Physiological Characteristics of Attention Deficit Hyperactivity Disorder in Children (Review)]. Vestnik novykh meditsinskikh tekhnologiy, 2013, vol. 20, no. 3, pp. 91–97. 
  11. Chutko L.S., Surushkina S.Yu., Anisimova T.I., Aytbekov K.A. Klinicheskaya tipologiya sindroma defitsita vnimaniya s giperaktivnost’yu [Clinical Typology of Attention Deficit Hyperactivity Disorder]. Ekologiya cheloveka, 2010, no. 11, pp. 58–60. 
  12. Korotkiy S. Neyronnye seti: osnovnye polozheniya [Neural Networks: Key Propositions]. St. Petersburg, 2002. 357 p. 
  13. Lazarev V.M., Sviridov A.P. Neyroseti i neyrokomp’yutery [Neural Networks and Computers]. Moscow, 2011. 131 p. 
  14. Loktyukhin V.N., Cherepnin A.A. Podderzhka prinyatiya resheniy na osnove neyro-nechetkoy tekhnologii pri diagnostike zabolevaniy zheludochno-kishechnogo trakta [Support of Making Decision on the Basis of Neirofuzzy Technology at Diagnostics of Diseases of Alimentary Canal]. Biotekhnosfera, 2009, no. 2, pp. 20–23. 
  15. Manchuk V.T., Smirnova O.V. Ispol’zovanie metodov neyrosetevogo modelirovaniya i diskriminantnogo analiza dlya otsenki sostoyaniya immunnogo statusa u bol’nykh ostrym nelimfoblastnym leykozom [Use of Methods of Neuronet Modeling and the Discriminant Analysis for Estimation of the Immune Status Condition in Patients with Acute Nonlymphoblast Leukemia]. Yakutskiy meditsinskiy zhurnal, 2010, no. 2, pp. 77–79. 
  16. Masalov O.P., Rebrova O.Yu., Red’ko V.G. Neyroevolyutsionnyy metod diagnostiki tipov insul’ta [Neuroevolutionary Method of Stroke Type Diagnosis]. Neyrokomp’tery, 2008, no. 1–2, pp. 70–75. 
  17. Medintsev V.G. Algoritmizatsiya vybora taktiki lecheniya serdechno-sosudistykh porazheniy na osnove optimizatsionno-prognosticheskogo modelirovaniya: avtoref. dis. … kand. tekhn. nauk [Algorithmization of Choosing Tactics to Treat Cardiovascular Lesions on the Basis of Optimization-Prognostic Modelling: Cand. Tech. Sci. Diss. Abs.]. Voronezh, 2005. 25 p. 
  18. Milova K.A. Prognoznye otsenki urovnya gemoglobina u khirurgicheskikh bol’nykh sredstvami neyronnykh setey [Prognostic Assessment of Surgical Patients’ Hemoglobin Using Neural Networks]. Neyrokomp’yutery, 2008, no. 5–6, pp. 93–96. 
  19. Gribanov A.V., Dzhos Yu.S., Deputat I.S., Pankov M.N., Podoplekin A.N., Podoplekin D.N., et al. Ocherki psikhofiziologii detey s sindromom defitsita vnimaniya s giperaktivnost’yu [Essays on Psychophysiology of Children with Attention Deficit Hyperactivity Disorder]. Arkhangelsk, 2009. 242 p. 
  20. Prasolova A.E. Matematicheskoe i programmnoe obespechenie obrabotki mnogomernykh dannykh neyronnymi setyami: avtoref. dis. … kand. tekhn. nauk [Software for Multidimensional Data Processing Using Neural Networks: Cand. Tech. Sci. Diss. Abs.]. Kursk, 2008. 27 p. 
  21. Poloz T.L., Shkurupiy V.A., Poloz V.V., Demin A.V. Rezul’taty kolichestvennogo tsitologicheskogo analiza stroeniya follikulyarnykh opukholey shchitovidnoy zhelezy s pomoshch’yu komp’yuternykh i neyrosetevykh tekhnologiy [The Results of Quantitative Cytological Analysis of the Structure of Follicular Thyroid Tumors Using Computer and Neural Network Technologies]. Vestnik Rossiyskoy akademii meditsinskikh nauk, 2006, no. 8, pp. 7–10. 
  22. Gribanov A.V., Volokitina T.V., Guseva E.A., Podoplekin D.N. Sindrom defitsita vnimaniya s giperaktivnost’yu u detey: ruk-vo prakt. psikhologa [Attention Deficit Hyperactivity Disorder in Children: A Practical Psychologist’s Guide]. Moscow, 2004. 176 p. 
  23. Uskov V.M. Primenenie neyronnogo modelirovaniya v diagnostike i lechenii oslozhneniy infarkta miokarda [The Use of the Neuronic Simulation in the Diagnosis and the Treatment of Myocardial Infarction Complications]. Vestnik novykh meditsinskikh tekhnologiy, 2006, no. 2, pp. 18–20. 
  24. Khusainova G.N. Prognozirovanie otdalennykh rezul’tatov lecheniya bol’nykh rakom molochnoy zhelezy s uchetom kliniko-immunomorfologicheskikh kriteriev i gormonal’nogo statusa: avtoref. dis. … kand. med. nauk [Prediction of Long-Term Results of Treatment of Breast Cancer Patients Based on Clinical and Immunomorphological Criteria and Hormonal Status: Cand. Med. Sci. Diss. Abs.]. Ufa, 2010. 24 p.



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North