CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Cardiac Extracellular Matrix and Postinfarction Reparative Fibrosis (Part 1). P. 54–66

Версия для печати

Section: Medical and biological sciences

Download (pdf, 3.2MB )

UDC

611-018.2:616.127-005.8-002.17-06:612.67

Authors

Anna N. Putyatina*, Lena B. Kim*
*Research Institute of Experimental and Clinical Medicine (Novosibirsk, Russian Federation)

Abstract

Modern cardiology has made great progress in the diagnosis of myocardial infarction, high-tech treatment of patients, and development of new groups of drugs for earliest possible recovery of blood supply to the ischemic myocardium. However, there remains a serious concern about mortality due to myocardial infarction, especially in older adults. To improve the situation, it is important to study the mechanisms of age-related changes in the reactivity of cardiac extracellular matrix and in the metabolism of its components. This can broaden our understanding of the nature and intensity of cardiac remodelling. The functionality of cells producing extracellular matrix proteins in response to exogenous and endogenous factors decreases with age. The quantitative and qualitative composition of cardiac extracellular matrix components also undergoes changes: collagen and fibronectin content increases, while the content of proteoglycans/glycosaminoglycans and matricellular proteins decreases, which is caused by the changing balance in the local regulation system (matrix metalloproteinases/tissue inhibitors of matrix metalloproteinases) and promotes cardiac interstitial fibrosis. Reparative myocardial fibrosis has been demonstrated to have different intensity depending on age and comorbidities. Modern clinical methods of functional assessment of cardiac remodelling in infarction only show changes in heart structural and functional characteristics and provide little information on the mechanisms of reparative fibrosis. The following phases can be distinguished in reparative fibrosis progression: the phase of destructive processes in the extracellular matrix, the phase of peak synthesis of extracellular matrix proteins, and the reduced synthesis phase. It should be noted that age-dependent modification of reparative fibrosis often causes the complications of myocardial infarction.

Keywords

extracellular matrix, collagens, proteoglycans, fibronectin, reparative fibrosis, ageing, myocardial infarction

References

  1. World Health Organization: Global Atlas on Cardiovascular Disease Prevention and Control. Geneva, 2011. 
  2. Zdravookhranenie v Rossii. 2015 [Healthcare in Russia. 2015]. Moscow, 2015. 174 p. 
  3. Bujak M., Kweon H.J., Chatila K., Li N., Taffet G., Frangogiannis N.G. Aging-Related Defects Are Associated with Adverse Cardiac Remodeling in a Mouse Model of Reperfused Myocardial Infarction. J. Am. Coll. Cardiol., 2008, vol. 51, no. 14, pp. 1384–1392. 
  4. Singh M., Foster C.R., Dalal S., Singh K. Role of Osteopontin in Heart Failure Associated with Aging. Heart Fail. Rev., 2010, vol. 15, no. 5, pp. 487–494. 
  5. Kim L.B., Putyatina A.N., Kuimov A.D. Rasprostranennost’ faktorov riska infarkta miokarda v pozhilom i starcheskom vozraste [Prevalence of Myocardium Infarction Risk Factors in Patients of Old Age]. Patologiya krovoobrashcheniya i kardiokhirurgiya, 2009, no. 3, pp. 79–82. 
  6. Priebe H.J. The Aged Cardiovascular Risk Patient. Br. J. Anaesth., 2000, vol. 85, no. 5, pp. 763–778. 
  7. Biernacka A., Frangogiannis N.G. Aging and Cardiac Fibrosis. Aging Dis., 2011, vol. 2, no. 2, pp. 158–173. 
  8. Gasanov A.G., Bershova T.V. Rol’ izmeneniy vnekletochnogo matriksa pri vozniknovenii serdechno-sosudistykh zabolevaniy [The Role of Changes of Matrix Metalloproteinase in Cardiovascular Diseases]. Biomeditsinskaya khimiya, 2009, vol. 55, no. 2, pp. 155–168. 
  9. Fan D., Takawale A., Lee J., Kassiri Z. Cardiac Fibroblasts, Fibrosis and Extracellular Matrix Remodeling in Heart Disease. Fibrogenesis Tissue Repair, 2012, vol. 5, no. 1, p. 15. 
  10. Cleutjens J.P., Kandala J.C., Guarda E., Guntaka R.V., Weber K.T. Regulation of Collagen Degradation in the Rat Myocardium After Infarction. J. Mol. Cell. Cardiol., 1995, vol. 27, no. 6, pp. 1281–1292. 
  11. Jugdutt B.I. Extracellular Matrix and Cardiac Remodeling. Interstitial Fibrosis in Heart Failure. Ed. by F.J. Villarreal. New York, 2005, vol. 253, pp. 23–55. 
  12. Lockhart M., Wirrig E., Phelps A., Wessels A. Extracellular Matrix and Heart Development. Birth Defects Res. A. Clin. Mol. Teratol., 2011, vol. 91, no. 6, pp. 535–550. 
  13. Rienks M., Papageorgiou A.P., Frangogiannis N.G., Heymans S. Myocardial Extracellular Matrix: An Ever- Changing and Diverse Entity. Circ. Res., 2014, vol. 114, no. 5, pp. 872–888. 
  14. Schellings M.W., Pinto Y.M., Heymans S. Matricellular Proteins in the Heart: Possible Role During Stress and Remodeling. Cardiovasc. Res., 2004, vol. 64, no. 1, pp. 24–31. 
  15. Matsui Y., Morimoto J., Uede T. Role of Matricellular Proteins in Cardiac Tissue Remodeling After Myocardial Infarction. World J. Biol. Chem., 2010, vol. 1, no. 5, pp. 69–80. 
  16. de Castro Brás L.E., Toba H., Baicu C.F., Zile M.R., Weintraub S.T., Lindsey M.L., Bradshaw A.D. Age and SPARC Change the Extracellular Matrix Composition of the Left Ventricle. Biomed. Res. Int., 2014, vol. 2014. Article ID 810562. 
  17. Dworatzek E., Baczko I., Kararigas G. Effects of Aging on Cardiac Extracellular Matrix in Men and Women. Proteomics Clin. Appl., 2016, vol. 10, no. 1, pp. 84–91. 
  18. Mays P.K., Bishop J.E., Laurent G.J. Age-Related Changes in the Proportion of Types I and III Collagen. Mech. Ageing Dev., 1988, vol. 45, no. 3, pp. 203–212. 
  19. Oken D.E., Boucek R.J. Quantitation of Collagen in Human Myocardium. Circ. Res., 1957, vol. 5, no. 4, pp. 357–361. 
  20. Mays P.K., McAnulty R.J., Campa J.S., Laurent G.J. Age-Related Changes in Collagen Synthesis and Degradation in Rat Tissues. Importance of Degradation of Newly Synthesized Collagen in Regulating Collagen Production. Biochem. J., 1991, vol. 276, pt. 2, pp. 307–313. 
  21. Annoni G., Luvarà G., Arosio B., Gagliano N., Fiordaliso F., Santambrogio D., Jeremic G., Mircoli L., Latini R., Vergani C., Masson S. Age-Dependent Expression of Fibrosis-Related Genes and Collagen Deposition in the Rat Myocardium. Mech. Ageing Dev., 1998, vol. 101, no. 1–2, pp. 57–72. 
  22. Thomas D.P., Zimmerman S.D., Hansen T.R., Martin D.T., McCormick R.J. Collagen Gene Expression in Rat Left Ventricle: Interactive Effect of Age and Exercise Training. J. Appl. Physiol., 2000, vol. 89, no. 4, pp. 1462–1468. 
  23. Mendes A.B., Ferro M., Rodrigues B., de Souza M.R., Araujo R.C., de Souza R.R. Quantification of Left Ventricular Myocardial Collagen System in Children, Young Adults, and the Elderly. Medicina (B. Aires), 2012, vol. 72, no. 3, pp. 216–220. 
  24. Kwak H.B., Kim J.H., Joshi K., Yeh A., Martinez D.A., Lawler J.M. Exercise Training Reduces Fibrosis and Matrix Metalloproteinase Dysregulation in the Aging Rat Heart. FASEB J., 2011, vol. 25, no. 3, pp. 1106–1117. 
  25. Orlandi A., Francesconi A., Marcellini M., Ferlosio A., Spagnoli L.G. Role of Ageing and Coronary Atherosclerosis in the Development of Cardiac Fibrosis in the Rabbit. Cardiovasc. Res., 2004, vol. 64, no. 3, pp. 544–552. 
  26. Miner E.C., Miller W.L. A Look Between the Cardiomyocytes: The Extracellular Matrix in Heart Failure. Mayo Clin. Proc., 2006, vol. 81, no. 1, pp. 71–76. 
  27. Omel’yanenko N.P., Slutskiy L.I. Soedinitel’naya tkan’ (gistofiziologiya i biokhimiya) [Connective Tissue (Histophysiology and Biochemistry)]. Vol. 1. Moscow, 2009. 380 p. 
  28. Weis S.M., Zimmerman S.D., Shah M., Covell J.W., Omens J.H., Ross J. Jr., Dalton N., Jones Y., Reed C.C., Iozzo R.V., McCulloch A.D. A Role for Decorin in the Remodeling of Myocardial Infarction. Matrix Biol., 2005, vol. 24, no. 4, pp. 313–324. 
  29. Sobel H., Hewlett M.J. Effect of Age on Hyaluronic Acid in Hearts of Dogs. J. Gerontol., 1967, vol. 22, no. 2, pp. 196–198. 
  30. Komosińska-Vassev K.B., Winsz-Szczotka K., Kuznik-Trocha K., Olczyk P., Olczyk K. Age-Related Changes of Plasma Glycosaminoglycans. Clin. Chem. Lab. Med., 2008, vol. 46, no. 2, pp. 219–224. 
  31. Huynh M.B., Morin C., Carpentier G., Garcia-Filipe S., Talhas-Perret S., Barbier-Chassefière V., van Kuppevelt T.H., Martelly I., Albanese P., Papy-Garcia D. Age-Related Changes in Rat Myocardium Involve Altered Capacities of Glycosaminoglycans to Potentiate Growth Factor Functions and Heparan Sulfate-Altered Sulfation. J. Biol. Chem., 2012, vol. 287, no. 14, pp. 11363–11373. 
  32. Hynes R.O., Yamada K.M. Fibronectins: Multifunctional Modular Glycoproteins. J. Cell. Biol., 1982, vol. 95, no. 2, pt. 1, pp. 369–377. 
  33. To W.S., Midwood K.S. Plasma and Cellular Fibronectin: Distinct and Independent Functions During Tissue Repair. Fibrogenesis Tissue Repair, 2011, vol. 4, p. 21. 
  34. Casscells W., Kimura H., Sanchez J.A., Yu Z.X., Ferrans V.J. Immunohistochemical Study of Fibronectin in Experimental Myocardial Infarction. Am. J. Pathol., 1990, vol. 137, no. 4, pp. 801–810. 
  35. Kanters S.D., Banga J.D., Algra A., Frijns R.C., Beutler J.J., Fijnheer R. Plasma Levels of Cellular Fibronectin in Diabetes. Diabetes Care, 2001, vol. 24, no. 2, pp. 323–327. 
  36. Eriksen H.O., Clemmensen I., Hansen M.S., Ibsen K.K. Plasma Fibronectin Concentration in Normal Subjects. Scand. J. Clin. Lab. Invest., 1982, vol. 42, no. 3, pp. 291–295. 
  37. Lemańska-Perek A., Pupek M., Polańska B., Leszek J., Kątnik-Prastowska I. Alterations in Molecular Status of Plasma Fibronectin Associated with Aging of Normal Human Individuals. Clin. Biochem., 2013, vol. 46, no. 9, pp. 787–794. 
  38. Putyatina A.N., Kim L.B. Soderzhanie fibronektina v syvorotke krovi u patsientov s infarktom miokarda v zavisimosti ot vozrasta [The Content of Fibronectin in Blood Serum in Patients with Myocardium Infarction Depending on Age]. Klinicheskaya laboratornaya diagnostika, 2014, no. 6, pp. 7–10. 
  39. Mamuya W., Chobanian A., Brecher P. Age-Related Changes in Fibronectin Expression in Spontaneously Hypertensive, Wistar-Kyoto, and Wistar Rat Hearts. Circ. Res., 1992, vol. 71, no. 6, pp. 1341–1350. 
  40. Burgess M.L., McCrea J.C., Hedrick H.L. Age-Associated Changes in Cardiac Matrix and Integrins. Mech. Ageing Dev., 2001, vol. 122, no. 15, pp. 1739–1756. 
  41. Kim L.B., Putyatina A.N., Nikonova I.K. Soderzhanie glikozaminoglikanov i gidroksiprolina v syvorotke krovi u prakticheski zdorovykh lyudey v zavisimosti ot vozrasta, pola i gruppy krovi [The Serum Levels of Glycosaminoglycans and Hydroxyproline in Relation to the Age, Gender, and Blood Group of Apparently Healthy Individuals]. Klinicheskaya laboratornaya diagnostika, 2011, no. 6, pp. 23–25. 
  42. Putyatina A.N., Kim L.B. Biokhimicheskie markery postinfarktnogo zamestitel’nogo fibroza u muzhchin razlichnogo vozrasta [Biochemical Markers and Age Specificity of Postinfarction Reparative Fibrosis in Men]. Patologiya krovoobrashcheniya i kardiokhirurgiya, 2011, no. 4, pp. 57–60. 
  43. Solov’eva N.I. Matrix Metalloproteases and Their Biological Functions. Russ. J. Bioorganic Chem., 1998, vol. 24, no. 4, pp. 217–226. 
  44. Visse R., Nagase H. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases: Structure, Function, and Biochemistry. Circ. Res., 2003, vol. 92, no. 8, pp. 827–839.
  45. Kähäri V.M., Saarialho-Kere U. Matrix Metalloproteinases and Their Inhibitors in Tumour Growth and Invasion. Ann. Med., 1999, vol. 31, no. 1, pp. 34–45. 
  46. Polyakova V., Hein S., Kostin S., Ziegelhoeffer T., Schaper J. Matrix Metalloproteinases and Their Tissue Inhibitors in Pressure-Overloaded Human Myocardium During Heart Failure Progression. J. Am. Coll. Cardiol., 2004, vol. 44, no. 8, pp. 1609–1618. 
  47. Bonnema D.D., Webb C.S., Pennington W.R., Stroud R.E., Leonardi A.E., Clark L.L., McClure C.D., Finklea L., Spinale F.G., Zile M.R. Effects of Age on Plasma Matrix Metalloproteinases (MMPs) and Tissue Inhibitor of Metalloproteinases (TIMPs). J. Card. Fail., 2007, vol. 13, no. 7, pp. 530–540. 
  48. Lindsey M.L., Goshorn D.K., Squires C.E., Escobar G.P., Hendrick J.W., Mingoia J.T., Sweterlitsch S.E., Spinale F.G. Age-Dependent Changes in Myocardial Matrix Metalloproteinase/Tissue Inhibitor of Metalloproteinase Profiles and Fibroblast Function. Cardiovasc. Res., 2005, vol. 66, no. 2, pp. 410–419. 
  49. Tayebjee M.H., Lip G.Y., Blann A.D., Macfadyen R.J. Effects of Age, Gender, Ethnicity, Diurnal Variation and Exercise on Circulating Levels of Matrix Metalloproteinases (MMP)-2 and -9, and Their Inhibitors, Tissue Inhibitors of Matrix Metalloproteinases (TIMP)-1 and -2. Thromb. Res., 2005, vol. 115, no. 3, pp. 205–210. 
  50. Kim L.B., Shkurupiy V.A., Putyatina A.N. Sopryazhennye s vozrastom izmeneniya v sisteme metalloproteinazy/ tkanevye ingibitory metalloproteinaz i komponentov proteinov v organakh myshey [Age-Related Changes in the System Metalloproteinase/Tissue Inhibitors of Metalloproteinase and Protein Components in Mouse Organs]. Byulleten’ eksperimental’noy biologii i meditsiny, 2016, vol. 161, no. 1, pp. 40–45. 
  51. Uusimaa P., Risteli J., Niemelä M., Lumme J., Ikäheimo M., Jounela A., Peuhkurinen K. Collagen Scar Formation After Acute Myocardial Infarction: Relationships to Infarct Size, Left Ventricular Function, and Coronary Artery Patency. Circulation, 1997, vol. 96, no. 8, pp. 2565–2572. 
  52. Barthélémy O., Beygui F., Vicaut E., Rouanet S., Van Belle E., Baulac C., Degrandsart A., Dallongeville J., Montalescot G., OPERA Investigators. Relation of High Concentrations of Plasma Carboxy-Terminal Telopeptide of Collagen Type I with Outcome in Acute Myocardial Infarction. Am. J. Cardiol., 2009, vol. 104, no. 7, pp. 904–909. 
  53. Kim L.B., Berezovskaya G.A., Layvin A.N., Tsyba L.P., Kotova I.I., Kalmykova E.Yu., Kulikov V.Yu. Dinamika soderzhaniya fibronektina u bol’nykh v protsesse rannego postinfarktnogo remodelirovaniya miokarda levogo zheludochka [Fibronectin Dynamics in Patients at Early Postinfarction Left Ventricular Myocardial Remodelling]. Byulleten’ Sibirskogo otdeleniya RAMN, 2002, vol. 22, no. 4, pp. 63–66. 
  54. Kim L.B., Layvin A.N., Berezovskaya G.A., Tsyba L.P., Kotova I.I., Kulikov V.Yu. Dinamika soderzhaniya glikozaminoglikanov i aktivnost’ tseruloplazmina u bol’nykh v protsesse rannego postinfarktnogo remodelirovaniya levogo zheludochka [Glycosaminoglycans Dynamics and Ceruloplasmin Activity in Patients at Early Postinfarction Left Ventricular Remodelling]. Byulleten’ Sibirskogo otdeleniya RAMN, 2003, vol. 23, no. 3, pp. 24–28. 
  55. Kim L.B., Kulikov V.Yu., Layvin A.N., Tsyba L.P., Minina N.G., Kalmykova E.Yu., Trufanova N.V., Kotova I.I., Korzhavina O.A. Diagnostika reparativnogo fibroza pri ostrom infarkte miokarda [Diagnosis of Reparative Fibrosis in Acute Myocardial Infarction]. Novosibirsk, 2005. 23 p.
  56. Kim L.B. Biokhimicheskie aspekty postinfarktnogo remodelirovaniya levogo zheludochka pri arterial’noy gipertenzii i nedifferentsirovannoy displazii soedinitel’noy tkani [Biochemical Aspects of Postinfarction Left Ventricular Remodelling in Patients with Arterial Hypertension and Undifferentiated Connective Tissue Вysplasia]. Kazanskiy meditsinskiy zhurnal, 2007, vol. 88, no. 5 (append.), pp. 48–50. 
  57. Kim L.B., Kulikov V.Yu., Minina N.G., Verba O.Yu. Postinfarktnoe remodelirovanie levogo zheludochka i fazy reparativnogo fibroza [Postinfarction Left Ventricular Remodelling and Phases of Reparative Fibrosis]. Vestnik Novosibirskogo gosudarstvennogo universiteta. Ser.: Biologiya, klinicheskaya meditsina, 2005, vol. 3, no. 3, pp. 53–63. 
  58. Ertl G., Frantz S. Healing After Myocardial Infarction. Cardiovasc. Res., 2005, vol. 66, no. 1, pp. 22–32. 
  59. Kelly D., Cockerill G., Ng L.L., Thompson M., Khan S., Samani N.J., Squire I.B. Plasma Matrix Metalloproteinase-9 and Left Ventricular Remodelling After Acute Myocardial Infarction in Man: A Prospective Cohort Study. Eur. Heart J., 2007, vol. 28, no. 6, pp. 711–718. 
  60. Peterson J.T., Li H., Dillon L., Bryant J.W. Evolution of Matrix Metalloprotease and Tissue Inhibitor Expression During Heart Failure Progression in the Infarcted Rat. Cardiovasc. Res., 2000, vol. 46, no. 2, pp. 307–315. 
  61. Gajarsa J.J., Kloner R.A. Left Ventricular Remodeling in the Post-Infarction Heart: A Review of Cellular, Molecular Mechanisms, and Therapeutic Modalities. Heart Fail. Rev., 2011, vol. 16, no. 1, pp. 13–21. 
  62. Pfeffer M.A., Braunwald E. Ventricular Remodeling After myocardial Infarction. experimental Observations and Clinical Implications. circulation, 1990, vol. 81, no. 4, pp. 1161–1172. 
  63. Zamilpa R., Lindsey M.L. Extracellular Matrix Turnover and Signaling During Cardiac Remodeling Following MI: Causes and Consequences. J. Mol. Cell. Cardiol., 2010, vol. 48, no. 3, pp. 558–563.



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North