Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21 ABOUT JOURNAL
|
Section: Physiology Download (pdf, 1.9MB )UDC616.8-07+612.825.1+612.821.2AuthorsYuliya S. Dzhos*, Lidiya P. Kalinina***Okkervil Paediatric Centre (Leningrad Region, Russian Federation) **Northern (Arctic) Federal University named after M.V. Lomonosov (Arkhangelsk, Russian Federation) Corresponding author: Lidiya Kalinina, address: proezd Badigina 3, Arkhangelsk, 163045, Russian Federation; e-mail: lidiakalinina@yahoo.com AbstractThis review summarizes the data of Russian and foreign studies on neurophysiological parameters of cognitive event-related potentials (ERPs). In addition, the article considers the essence of the method of cognitive processes analysis, key techniques of recording cognitive ERPs, and the field of their application in medicine and psychology. Further, the paper presents a modern view on the structure of cognitive ERPs, highlights their sub-components – P3a and P3b – as well as sensory and cognitive control waves. The authors describe the idea of creating functional biomarkers for such conditions as attention deficit hyperactivity disorder, schizophrenia, depression, autism spectrum disorders, dyslexia, brain injury, and dementia. Despite the progress made in the study of cognitive ERPs in recent decades, their exact neural origins and neurophysiological role remain unclear. The review covers the main assumptions and advances of scientists from around the world concerning the interaction between the brain structures and cognitive functions in humans. Moreover, we present investigations dealing with cognitive ERPs in brain lesions. Recently, increasing attention has been given to the neurochemistry and neuropharmacology of P300. In this regard, the article describes the dual-transmitter P300 hypothesis. Available data suggest that P3a is mediated by dopaminergic activity, while P3b, by norepinephrine activity. Other studies indicate a specific connection between the index of glutamate neurotransmitter function in the anterior cingulate and frontal P300 potentials. The obtained significant results of applying the method of cognitive evoked potentials in maintaining human health serve as a powerful stimulus for further scientific research.Keywordscognitive event-related potentials, Р300, components of event-related potentials, Р3а, Р3b, analysis of cognitive processesReferences1. Zueva I.B., Vanaeva K.I., Sanets E.L. Kognitivnyy vyzvannyy potentsial P300: rol’ v otsenke kognitivnykh funktsiy u bol’nykh s arterial’noy gipertenziey i ozhireniem [Cognitive Evoked Potential, P300 Component: Role in Assessment of Cognitive Function Among Patients with Arterial Hypertension and Obesity]. Byulleten’ SO RAMN, 2012, vol. 32, no. 5, pp. 55–62.2. Evtushenko S.K., Morozova T.M., Shestova E.P., Tribrat A.A., Morozova A.V. Narushenie kognitivnykh funktsiy u detey: neyrofiziologicheskaya otsenka i korrektsiya [Cognitive Disorders in Children: Neurophysiologic Estimation and Correction]. Mezhdunarodnyy nevrologicheskiy zhurnal, 2010, no. 1, pp. 64–70. 3. Kropotov J.D., Pronina M.V., Polyakov J.I., Ponomarev V.A. Functional Biomarkers in the Diagnostics of Mental Disorders: Cognitive Event-Related Potentials. Hum. Physiol., 2013, vol. 39, no. 1, pp. 8–18. 4. Gnezditskiy V.V., Korepina O.S. Atlas po vyzvannym potentsialam mozga (prakticheskoe rukovodstvo, osnovannoe na analize konkretnykh klinicheskikh nablyudeniy) [Atlas of Evoked Brain Potentials: A Practical Guide Based on the Analysis of Concrete Clinical Observations]. Ivanovo, 2011. 532 p. 5. Polich J. Cognitive Brain Potentials. Curr. Dir. Psychol. Sci., 1993, vol. 2, no. 6, pp. 175−179. 6. Gnezditskiy V.V., Shamshinova A.M. (eds.). Opyt primeneniya vyzvannykh potentsialov v klinicheskoy praktike [Experience of Using Evoked Potentials in Clinical Practice]. Moscow, 2001. 480 p. 7. Zenkov L.R., Ronkin M.A. Funktsional’naya diagnostika nervnykh bolezney [Functional Diagnostics of Diseases of the Nervous System]. Moscow, 2004. 488 p. 8. Gnezditskiy V.V. Vyzvannye potentsialy mozga v klinicheskoy praktike [Evoked Brain Potentials in Clinical Practice]. Moscow, 2003. 264 p. 9. Gordeev S.A. The Use of Endogenous P300 Event-Related Potentials of the Brain for Assessing Cognitive Functions in Healthy Subjects and in Clinical Practice. Hum. Physiol., 2007, vol. 33, no. 2, pp. 236–246. 10. Barry R.J., De Blasio F.M., Fogarty J.S. A Processing Schema for Children in the Auditory Equiprobable Go/ NoGo Task: ERP Components and Behaviour. Int. J. Psychophysiol., 2018, vol. 123, pp. 74–79. 11. Ivanitskiy A.M., Strelets V.B., Korsakov I.A. Informatsionnye protsessy mozga i psikhicheskaya deyatel’nost’ [Information Processes in the Brain and Mental Activity]. Moscow, 1984. 200 p. 12. Kanunikov I.E., Vetosheva V.I. Sovremennye predstavleniya o psikhofiziologicheskoy znachimosti P300 [Modern Views on the Psychophysiological Significance of P300]. Fiziologiya cheloveka, 1988, vol. 14, no. 2, pp. 314–323. 13. Kostandov E.A., Zakharova N.N. Zavisimost’ pozdnikh vyzvannykh korkovykh potentsialov ot kompleksa kognitivnykh faktorov [Dependence of Late Evoked Cortical Potentials on a Complex of Cognitive Factors]. Zhurnal vysshey nervnoy deyatel’nosti im. I.P. Pavlova, 1992, vol. 42, no. 3, pp. 477–490. 14. Hénon H., Pasquier F., Leys D. Poststroke Dementia. Cerebrovasc. Dis., 2006, vol. 22, no. 1, pp. 61–70. 15. Asaumi Y., Morita K., Nakashima Y., Muraoka A., Uchimura N. Evaluation of P300 Components for Emotion-Loaded Visual Event-Related Potential in Elderly Subjects, Including Those with Dementia. Psychiatry Clin. Neurosci., 2014, vol. 68, no. 7, pp. 558–567. 16. Vlasenko A.N., Miroshnikova E.B., Odintsova G.V. Issledovanie kognitivnykh vyzvannykh potentsialov P300 u patsientov c epilepsiey [Study of Cognitive Induced Potentials P300 in Patients with Epilepsy]. Vestnik Sankt-Peterburgskoy gosudarstvennoy meditsinskoy akademii im. I.I. Mechnikova, 2009, no. 3, pp. 222–225. 17. Bachiller A., Romero S., Molina V., Alonso J.F., Mañanas M.A., Poza J., Hornero R. Auditory P3a and P3b Neural Generators in Schizophrenia: An Adaptive sLORETA P300 Localization Approach. Schizophr. Res., 2015, vol. 169, no. 1-3, pp. 318–325. 18. Duncan C.C., Barry R.J., Connolly J.F., Fischer C., Michie P.T., Näätänen R., Polich J., Reinvang I., Van Petten C. Event-Related Potentials in Clinical Research: Guidelines for Eliciting, Recording, and Quantifying Mismatch Negativity, P300, and N400. Clin. Neurophysiol., 2009, vol. 120, no. 11, pp. 1883–1908. 19. Hedges D., Janis R., Mickelson S., Keith C., Bennett D., Brown B.L. P300 Amplitude in Alzheimer’s Disease: A Meta-Analysis and Meta-Regression. Clin. EEG Neurosci., 2016, vol. 47, no. 1, pp. 48–55. 20. Soldatovic-Stajic B., Misic-Pavkov G., Bozic K., Novovic Z., Gajic Z. Neuropsychological and Neurophysiological Evaluation of Cognitive Deficits Related to the Severity of Traumatic Brain Injury. Eur. Rev. Med. Pharmacol. Sci., 2014, vol. 18, no. 11, pp. 1632–1637. 21. Kuznetsova E.A., Yakupov E.Z. Izmeneniya kognitivnykh vyzvannykh potentsialov (P300) pri khronicheskikh ezhednevnykh golovnykh bolyakh [Changes in the Cognitive Evoked Potentials (P300) During Chronic Daily Headaches]. Kazanskiy meditsinskiy zhurnal, 2011, vol. 92, no. 1, pp. 17–19. 22. Covey T.J., Shucard J.L., Benedict R.H., Weinstock-Guttman B., Shucard D.W. Improved Cognitive Performance and Event-Related Potential Changes Following Working Memory Training in Patients with Multiple Sclerosis. Mult. Scler. J. Exp. Transl. Clin., 2018, vol. 4, no. 1. 23. Stafeeva I.V., Dudanov I.P. Parametry kognitivnykh vyzvannykh potentsialov (P300) u patsientov v zavisimosti ot lokalizatsii ishemicheskogo ochaga v polushariyakh bol’shogo mozga [Parameters of Cognitive Evoked Potentials (P300) in Patients Depending on the Localization of Ischemic Lesions in the Cerebral Hemispheres]. Sovremennye problemy nauki i obrazovaniya, 2015, no. 6, p. 95. 24. Houston R.J., Schlienz N.J. Event-Related Potentials as Biomarkers of Behavior Change Mechanisms in Substance Use Disorder Treatment. Biol. Psychiatry Cogn. Neurosci. Neuroimaging, 2018, vol. 3, no. 1, pp. 30–40. 25. Luijten M., Kleinjan M., Franken I.H. Event-Related Potentials Reflecting Smoking Cue Reactivity and Cognitive Control as Predictors of Smoking Relapse and Resumption. Psychopharmacology (Berl.), 2016, vol. 233, no. 15-16, pp. 2857–2868. 26. Morie K.P., Wu J., Landi N., Potenza M.N., Mayes L.C., Crowley M.J. Feedback Processing in Adolescents with Prenatal Cocaine Exposure: An Electrophysiological Investigation. Dev. Neuropsychol., 2018, vol. 43, no. 3, pp. 183–197. 27. Michelini G., Kitsune V., Vainieri I., Hosang G.M., Brandeis D., Asherson P., Kuntsi J. Shared and Disorder-Specific Event-Related Brain Oscillatory Markers of Attentional Dysfunction in ADHD and Bipolar Disorder. Brain Topogr., 2018. vol. 31, no. 34, pp. 672–689. 28. Sokhadze E.M., Lamina E.V., Casanova E.L., Kelly D.P., Opris I., Khachidze I., Casanova M.F. Atypical Processing of Novel Distracters in a Visual Oddball Task in Autism Spectrum Disorder. Behav. Sci. (Basel), 2017, vol. 7, no. 4. 29. Lepock J.R., Mizrahi R., Korostil M., Bagby R.M., Pang E.W., Kiang M. Event-Related Potentials in the Clinical High-Risk (CHR) State for Psychosis: A Systematic Review. Clin. EEG Neurosci., 2018, vol. 49, no. 4, pp. 215–225. 30. Steczkowska-Klucznik M., Kroczka S. Cognitive Event Related Potentials in Neuropediatrics. Przegl. Lek., 2006, vol. 63, no. 11, pp. 1245–1247. 31. Gregory L., Rosa R.F.M., Zen P.R.G., Sleifer P. Auditory Evoked Potentials in Children and Adolescents with Down Syndrome. Am. J. Med. Genet. A., 2018, vol. 176, no. 1, pp. 68–74. 32. Polich J., Squire L.R. P300 from Amnesic Patients with Bilateral Hippocampal Lesions. Electroencephalogr. Clin. Neurophysiol., 1993, vol. 86, no. 6, pp. 408–417. 33. Huang W.-J., Chen W.-W., Zhang X. The Neurophysiology of P 300 – an Integrated Review. Eur. Rev. Med. Pharmacol. Sci., 2015, vol. 19, no. 8, pp. 1480–1488. 34. Yingling C.D., Hosobuchi Y. A Subcortical Correlate of P300 in Man. Electroencephalogr. Clin. Neurophysiol., 1984, vol. 59, no. 1, pp. 72–76. 35. Frodl-Bauch T., Bottlender R., Hegerl U. Neurochemical Substrates and Neuroanatomical Generators of the Event-Related P300. Neuropsychobiology, 1999, vol. 40, no. 2, pp. 86–94. 36. Halgren E., Squires N.K., Wilson C.L., Rohrbaugh J.W., Babb T.L., Crandall P.H. Endogenous Potentials Generated in the Human Hippocampal Formation and Amygdala by Infrequent Events. Science, 1980, vol. 210, no. 4471, pp. 803–805. 37. Molnar M. On the Origin of the P300 Event-Related Potential Component. Int. J. Psychophysiol., 1994, vol. 17, no. 2, pp. 129–144. 38. Knight R.T. Contribution of Human Hippocampal Region to Novelty Detection. Nature, 1996, vol. 383, no. 6597, pp. 256–259. 39. Soltani M., Knight R. Neural Origins of the P300. Crit. Rev. Neurobiol., 2000, vol. 14, no. 3-4, pp. 199–224. 40. Knight R.T. Neural Mechanisms of Event-Related Potentials: Evidence from Human Lesion Studies. Rohrbaugh J.W., Parasuraman R., Johnson R. Jr. (eds.). Event-Related Brain Potentials: Basic Issues and Applications. New York, 1990, pp. 3–18. 41. Polich J. Theoretical Overview of P3a and P3b. Polich J. (ed.). Detection of Change: Event-Related Potential and fMRI Findings. Boston, 2003, pp. 83–98. 42. Egorov A.V., Gnezditskiy V.V., Koptelov Yu.M. Analiz dipol’nykh istochnikov kognitivnykh vyzvannykh potentsialov (P300) mozga cheloveka [Analysis of Dipole Sources of Cognitive Evoked Potentials (P300) of the Human Brain]. Sovremennoe sostoyanie metodov neinvazivnoy diagnostiki v meditsine [Current State of Non-Invasive Diagnostic Methods in Medicine]. Yalta, 1996, pp. 106–108. 43. Araki T., Kasai K., Yamasue H., Kato N., Kudo N., Ohtani T., Nakagome K., Kirihara K., Yamada H., Abe O., Iwanami A. Association Between Lower P300 Amplitude and Smaller Anterior Cingulate Cortex Volume in Patients with Posttraumatic Stress Disorder: A Study of Victims of Tokyo Subway Sarin Attack. Neuroimage, 2005, vol. 25, no. 1, pp. 43–50. 44. Savel’eva N.A., Anisimov G.V., Kalashnikova T.P. Pokazateli kognitivnykh vyzvannykh potentsialov u detey s rechevym dizontogenezom [Indicators of Cognitive Evoked Potentials in Children with Speech Dysontogenesis]. Fundamental’nye issledovaniya, 2015, no. 1 (pt. 2), pp. 346–349. 45. Fabiani M., Karis D., Donchin E. Effects of Mnemonic Strategy Manipulation in a Von Restorff Paradigm. Electroencephalogr. Clin. Neurophysiol., 1990, vol. 75, no. 2, рp. 22–35. 46. Koberskaya N.N. Kognitivnyy potentsial P300 [P300 Cognitive Potential]. Nevrologicheskiy zhurnal, 2003, vol. 8, no. 6, pp. 34–42. 47. Charvey A., Koberskaya N.N. Kharakteristiki kognitivnogo vyzvannogo potentsiala P300 pri umerennykh kognitivnykh rasstroystvakh u pozhilykh patsientov s distsirkulyatornoy entsefalopatiey [The Characteristics of the Cognitive Event Related Potential P300 in Elderly Patients with Mild Cognitive Impairment Associated with Cerebrovascular Insufficiency]. Nevrologicheskiy zhurnal, 2006, vol. 11 (suppl. 1), pp. 64–70. 48. Tachibana H., Toda K., Sugita M. Event-Related Potentials in Patients with Multiple Lacunar Infarcts. Gerontology, 1992, vol. 38, no. 6, pp. 322–329. 49. Polich J., Criado J.R. Neuropsychology and Neuropharmacology of P3a and P3b. Int. J. Psychophysiol., 2006, vol. 60, no. 2, pp. 172–185. 50. Volpe U., Mucci A., Bucci P., Merlotti E., Galderisi S., Maj M. The Cortical Generators of P3a and P3b: A LORETA Study. Brain Res. Bull., 2007, vol. 73, no. 4-6, pp. 220–223. 51. Hall M.H., Jensen J.E., Du F., Smoller J.W., O’Connor L., Spencer K.M., Öngür D. Frontal P3 Event-Related Potential Is Related to Brain Glutamine/Glutamate Ratio Measured in vivo. Neuroimage, 2015, vol. 111, pp. 186–191. 52. Uvais N.A., Nizamie S.H., Das B., Praharaj S.K., Ul Haq Katshu M.Z. Auditory P300 Event-Related Potential: Normative Data in the Indian Population. Neurol. India, 2018, vol. 66, no. 1, pp. 176–180. 53. Begum T., Reza F., Ahmed I., Abdullah J.M. Influence of Education Level on Design-Induced N170 and P300 Components of Event Related Potentials in the Human Brain. J. Integr. Neurosci., 2014, vol. 13, no. 1, pp. 71–88. 54. Tomé D., Barbosa F., Nowak K., Marques-Teixeira J. The Development of the N1 and N2 Components in Auditory Oddball Paradigms: A Systematic Review with Narrative Analysis and Suggested Normative Values. J. Neural Transm. (Vienna), 2015, vol. 122, no. 3, pp. 375–391. |
Make a Submission
INDEXED IN:
|