Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21 ABOUT JOURNAL
|
Section: Medical and biological sciences Download (pdf, 2.3MB )UDC616-092.16:616-092.9+599.323.4AuthorsAksin’ya S. Lipatova*, Azamat Kh. Kade*, Artem I. Trofimenko**Kuban State Medical University (Krasnodar, Russian Federation) AbstractThe research aimed to study the effectiveness of tDCS-therapy in combined stress-induced hormonal and cytokine status disorders in untrained male rats with high initial levels of stress tolerance and endurance. Group 1 (control) consisted of 10 intact rats. Based on the results of the 1st forced swim test, rats with the swimming time exceeding 371 s were selected for groups 2 and 3. Group 2 (comparison) included 8 rats that did not receive tDCS-therapy. Group 3 (treatment group) consisted of 8 rats that were subjected to 5 sessions of tDCS-therapy. In groups 2 and 3, the 2nd forced swim test was carried out on the 7th day of the experiment and orthostatic stress modelling with subsequent blood sampling, on the 8th day. We determined the content of adrenaline, ACTH, corticosterone, IL-1β, IL-6 and IL-10 in the blood plasma. Based on the results of the 1st forced swim test, the swimming time in rats with high levels of stress tolerance and endurance exceeded 371 s. The 2nd forced swim test revealed a reduction in swimming time by 91.4 % in Group 2. Orthostatic stress in rats from Group 2 was accompanied by an increase in blood plasma levels of adrenaline by 224.2 %, ACTH by the factor of 5.7, corticosterone by 58 %, IL-1β by 129.6 %, IL-6 by the factor of 4.4, and IL-10 by 28.4 %, compared to the control. According to the results of the 2nd forced swim test, 5 sessions of tDCS-therapy in Group 3 increased the swimming time by 79.9 %. Orthostatic stress was accompanied by a rise in the levels of adrenaline by 144.5 %, ACTH by the factor of 6.3, corticosterone by 25 %, IL-1β by 38.1 %, IL-6 by 54.1 %, and IL-10 by 10.8 %, in relation to the comparison group. Thus, we conclude that tDCS-therapy prevents maladaptation under combined stress.KeywordstDCS, combined stress, maladaptation, cytokines, adrenaline, corticosterone, stress toleranceReferences1. Feder A., Nestler E.J., Charney D.S. Psychobiology and Molecular Genetics of Resilience. Nat. Rev. Neurosci., 2009, vol. 10, no. 6, pp. 446–457. DOI: 10.1038/nrn26492. Russo S.J., Murrough J.W., Han M.-H., Charney D.S., Nestler E.J. Neurobiology of Resilience. Nat. Neurosci., 2012, vol. 15, no. 11, pp. 1475–1484. DOI: 10.1038/nn.3234 3. Karkishchenko V.N., Kapanadze G.D., Den’gina S.E., Stankova N.V. Razrabotka metodiki otsenki fizicheskoy vynoslivosti melkikh laboratornykh zhivotnykh dlya izucheniya adaptogennoy aktivnosti nekotorykh lekarstvennykh preparatov [Development of Methods for Assessing Physical Endurance in Small Laboratory Animals to Study the Adaptogenic Activity of Certain Medicines]. Biomeditsina, 2011, vol. 1, no. 1, pp. 72–74. 4. Kurzanov A.N., Zabolotskikh N.V., Manuylov A.M. Kliniko-fiziologicheskie aspekty diagnostiki funktsional’nykh rezervov organizma [Clinical and Physiological Aspects of Functional Body Reserves Diagnostic]. Kubanskiy nauchnyy meditsinskiy vestnik, 2015, vol. 6, pp. 73–77. DOI: 10.25207/1608-6228-2015-6-73-77 5. Jin C.-H., Paik I.-Y., Kwak Y.S., Jee Y.-S., Kim J.-Y. Exhaustive Submaximal Endurance and Resistance Exercises Induce Temporary Immunosuppression via Physical and Oxidative Stress. J. Exerc. Rehabil., 2015, vol. 11, no. 4, pp. 198–203. DOI: 10.12965/ jer.150221 6. Bishop N., Walsh N., Gleeson M. (eds.). Exercise Immunology. New York, 2013. 424 p. 7. Malygin A.V. Fizioterapiya tsentral’nogo deystviya – neot”emlemaya chast’ osnashcheniya sovremennykh organizatsiy [Central Physiotherapy Is an Integral Part of the Equipment of Modern Organizations]. Poliklinika, 2018, vol. 1, no. 3, pp. 35–36. 8. Banissy M.J., Muggleton N.G. Transcranial Direct Current Stimulation in Sports Training: Potential Approaches. Front. Hum. Neurosci., 2013, vol. 7, p. 129. DOI: 10.3389/fnhum.2013.00129 9. Lipatova A.S., Polyakov P.P., Kade A.Kh., Trofimenko A.I., Kravchenko S.V. Vliyanie transkranial’noy elektrostimulyatsii na vynoslivost’ krys s raznoy ustoychivost’yu k stressu [The Influence of Transcranial Direct Current Stimulation on the Endurance of Rats with Different Stress Vulnerability]. Biomeditsina, 2018, no. 1, pp. 84–91. 10. Lipatova A.S., Polyakov P.P., Kade A.Kh., Zanin S.A., Trofimenko A.I., Malysheva T.V. Modifikatsiya metodiki TES-terapii dlya ee primeneniya u melkikh laboratornykh gryzunov [Modification of СES-Therapy for Its Use in Small Laboratory Rodents]. Sovremennye problemy nauki i obrazovaniya, 2015, no. 5, p. 347. Available at: https://www. science-education.ru/ru/article/view?id=22696 (accessed: 12 October 2018). 11. Digurova I.I., Gushchin A.G. Vliyanie stressoustoychivosti na gemoreologicheskie pokazateli v norme i pri ortostaticheskom stresse [Influence of Stress-Resistance on Hemorheological Indices in Norm and Under Orthostatic Stress]. Yaroslavskiy pedagogicheskiy vestnik, 2013, vol. 3, no. 1, pp. 107–111. 12. Trofimenko A.I. Patogeneticheskoe obosnovanie primeneniya TES-terapii pri ishemicheskom insul’te (eksperimental’noe issledovanie) [Pathogenetic Rationale for the Use of СES-Therapy in Ischemic Stroke (Experimental Study)]. Krasnodar, 2014. 23 p. 13. Bogdanova O.V., Kanekar S., D’Anci K.E., Renshaw P.F. Factors Influencing Behavior in the Forced Swim Test. Physiol. Behav., 2013, vol. 118, pp. 227–239. DOI: 10.1016/j.physbeh.2013.05.012 14. Poleszak E., Wlaź P., Kedzierska E., Nieoczym D., Wyska E., Szymura-Oleksiak J., Fidecka S., Radziwoń-Zaleska M., Nowak G. Immobility Stress Induces Depression-Like Behavior in the Forced Swim Test in Mice: Effect of Magnesium and Imipramine. Pharmacol. Rep., 2006, vol. 58, no. 5, pp. 746–752. 15. Brooks K., Carter J. Overtraining, Exercise, and Adrenal Insufficiency. J. Nov. Physiother, 2013, vol. 3, no. 125. DOI: 10.4172/2165-7025.1000125 16. De Miguel Z., Vegas O., Garmendia L., Arregi A., Beitia G., Azpiroz A. Behavioral Coping Strategies in Response to Social Stress Are Associated with Distinct Neuroendocrine, Monoaminergic and Immune Response Profiles in Mice. Behav. Brain Res., 2011, vol. 225, no. 2, pp. 554–561. DOI: 10.1016/j.bbr.2011.08.011 17. Freeman J.V., Dewey F.E., Hadley D.M., Myers J., Froelicher V.F. Autonomic Nervous System Interaction with the Cardiovascular System During Exercise. Prog. Cardiovasc. Dis., 2006, vol. 48, no. 5, pp. 342–362. DOI: 10.1016/j.pcad.2005.11.003 18. Folkman S. Stress: Appraisal and Coping. Gellman M.D., Turner J.R. (eds.). Encyclopedia of Behavioral Medicine. New York, 2013, pp. 1913–1915. DOI: 10.1007/978-1-4419-1005-9_215 19. Allen J., Sun Y., Woods J.A. Exercise and the Regulation of Inflammatory Responses. Bouchard C. (ed.). Progress in Molecular Biology and Translational Science. Academic Press, 2015. Vol. 135, pp. 337–354. 20. Manenschijn L., Koper J.W., Lamberts S.W., van Rossum E.F. Evaluation of a Method to Measure Long Term Cortisol Levels. Steroids, 2011, vol. 76, no. 10-11, pp. 1032–1036. DOI: 10.1016/j.steroids.2011.04.005 21. Papadopoulos A.S., Cleare A.J. Hypothalamic–Pituitary–Adrenal Axis Dysfunction in Chronic Fatigue Syndrome. Nat. Rev. Endocrinol., 2012, vol. 8, no. 1, pp. 22–32. DOI: 10.1038/nrendo.2011.153 22. Ebner K., Singewald N. Individual Differences in Stress Susceptibility and Stress Inhibitory Mechanisms. Curr. Opin. Behav. Sci., 2017, vol. 14, pp. 54–64. DOI: 10.1016/j.cobeha.2016.11.016 23. Wong D.L., Tai T.C., Wong-Faull D.C., Claycomb R., Meloni E.G., Myers K.M., Carlezon W.A. Jr., Kvetnansky R. Epinephrine: A Short- and Long-Term Regulator of Stress and Development of Illness: A Potential New Role for Epinephrine in Stress. Cell. Mol. Neurobiol., 2012, vol. 32, no. 5, pp. 737–748. DOI: 10.1007/s10571-011-9768-0 24. Kubera M., Obuchowicz E., Goehler L., Brzeszcz J., Maes M. In Animal Models, Psychosocial Stress-Induced (Neuro)Inflammation, Apoptosis and Reduced Neurogenesis Are Associated to the Onset of Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, vol. 35, no. 3, pp. 744–759. DOI: 10.1016/j.pnpbp.2010.08.026 25. Ji L.L., Gomez-Cabrera M.C., Steinhafel N., Vina J. Acute Exercise Activates Nuclear Factor (NF)-κB Signaling Pathway in Rat Skeletal Muscle. FASEB J., 2004, vol. 18, no. 13, pp. 1499–1506. DOI: 10.1096 / fj.04-1846com 26. Strickland J., McIlmoil S., Williams B.J., Seager D.C., Porter J.P., Judd A.M. Interleukin-6 Increases the Expression of Key Proteins Associated with Steroidogenesis in Human NCI-H295R Adrenocortical Cells. Steroids, 2017, vol. 119, pp. 1–7. DOI: 10.1016/j.steroids.2016.12.014 27. Bujak M., Frangogiannis N.G. The Role of IL-1 in the Pathogenesis of Heart Disease. Arch. Immunol. Ther. Exp. (Warsz.), 2009, vol. 57, no. 3, pp. 165–176. DOI: 10.1007/s00005-009-0024-y 28. Goshen I., Kreisel T., Ben-Menachem-Zidon O., Licht T., Weidenfeld J., Ben-Hur T., Yirmiya R. Brain Interleukin-1 Mediates Chronic Stress-Induced Depression in Mice via Adrenocortical Activation and Hippocampal Neurogenesis Suppression. Mol. Psychiatry, 2008, vol. 13, no. 7, pp. 717–728. DOI: 10.1038/sj.mp.4002055 29. Hueston C.M., Deak T. The Inflamed Axis: The Interaction Between Stress, Hormones, and the Expression of Inflammatory-Related Genes Within Key Structures Comprising the Hypothalamic–Pituitary–Adrenal Axis. Physiol. Behav., 2014, vol. 124, pp. 77–91. DOI: 10.1016/j.physbeh.2013.10.035 30. Koo J.W., Duman R.S. Evidence for IL-1 Receptor Blockade as a Therapeutic Strategy for the Treatment of Depression. Curr. Opin. Investig. Drugs, 2009, vol. 10, no. 7, pp. 664–671. 31. Leonard B., Maes M. Mechanistic Explanations How Cell-Mediated Immune Activation, Inflammation and Oxidative and Nitrosative Stress Pathways and Their Sequels and Concomitants Play a Role in the Pathophysiology of Unipolar Depression. Neurosci. Biobehav. Rev., 2012, vol. 36, no. 2, pp. 764–785. DOI: 10.1016/j.neubiorev.2011.12.005 32. Tsigos C., Kyrou I., Kassi E., Chrousos G.P. Stress, Endocrine Physiology and Pathophysiology. De Groot L.J., Chrousos G., Dungan K., et al. (eds.). Endotext. South Dartmouth, 2000. Available at: https://www.ncbi.nlm.nih.gov/books/ NBK278995 (accessed 25 October 2018). 33. Voorhees J.L., Tarr A.J., Wohleb E.S., Godbout J.P., Mo X., Sheridan J.F., Eubank T.D., Marsh C.B. Prolonged Restraint Stress Increases IL-6, Reduces IL-10, and Causes Persistent Depressive-Like Behavior That Is Reversed by Recombinant IL-10. PLoS One, 2013, vol. 8, no. 3. Art. no. e58488. DOI: 10.1371/journal.pone.0058488 |
Make a Submission
INDEXED IN:
|