CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

The Effect of Forced Water Deprivation on Norepinephrine Levels in the Brain of Young Rabbits. P. 381–388

Версия для печати

Section: Physiology

Download (pdf, 0.4MB )

UDC

577.175.52:[612.82+612.3]

DOI

10.17238/issn2542-1298.2019.7.4.381

Authors

Emiliya T. Gadzhieva*  ORCID: 0000-0002-4780-4466
Mamed A. Karaev* ORCID: 0000-0001-6862-1653
*Azerbaijan State Pedagogical University (Baku, Republic of Azerbaijan)
Corresponding author: Emiliya Gadzhieva, address: 68 Uzeyir Hajibeyli St., AZ1000, Baku, Republic of Azerbaijan; e-mail: nazaket-alieva@mail.ru

Abstract

This paper aimed to study norepinephrine levels in the mitochondria of the brain structures of 3-month-old rabbits with different periods of water deprivation and against the background of restored drinking regime. The experimental group was divided into 4 subgroups: rabbits exposed to 1, 3 and 5 days of water deprivation and those exposed to 5 days of water deprivation followed by 7 days of restored drinking regime. To determine norepinephrine levels we used the universal fluorimetric method. The reference mitochondrial fraction of the brain was isolated according to the method of Somogyi and Fonjo. The research found that forced water deprivation causes an increase in norepinephrine levels in the mitochondrial fractions of the brain in 3-month-old rabbits. This increase depends on the duration of water deprivation and on the brain structure. After one day of water deprivation, norepinephrine levels in different brain structures increase by 17–29 %, compared with the control animals. On the 3rd and 5th days of water deprivation, norepinephrine levels increase by 25–36 % and 33–47 %, respectively, compared with the control. The effect of water deprivation on the hypothalamic noradrenergic systems is generally more pronounced, compared with other brain structures under study (orbitofrontal, sensorimotor, limbic, visual cortex and brainstem). Against the background of 7 days of restored drinking regime, norepinephrine levels tend to decrease in all the above-mentioned brain structures. The research results indicate that, depending on the duration of water deprivation, norepinephrine levels in rabbit brain structures undergo significant changes.

Keywords

dehydration stress, norepinephrine, water deprivation, drinking regime, rabbits

References

1. Charney D.S. Psychobiological Mechanisms of Resilience and Vulnerability: Implications for Successful Adaptation to Extreme Stress. Am. J. Psychiatry, 2004, vol. 161, no. 2, pp. 195–216.
2. Jéquier E., Constant F. Water as an Essential Nutrient: The Physiological Basis of Hydration. Eur. J. Clin. Nutr., 2010, vol. 64, no. 2, pp. 115–123.
3. Adrianov O.S., Gasanov G.G. (eds.). Adaptivnye funktsii golovnogo mozga [Adaptive Functions of the Brain]. Baku, 1980. 240 p.
4. Svetukhina V.M. Tsitoarkhitektonika novoy kory mozga v otryade gryzunov [Cytoarchitectonics of the Neocortex in Rodents]. Arkhiv anatomii, embriologii i gistologii, 1962, vol. 42, no. 2, pp. 31–45.
5. Somogyi J., Fonjo A., Vincze I. Preparation of Brain Mitochondria. Acta Physiol. Acad. Sci. Hung., 1962, vol. 21, pp. 295–300.
6. Kogan B.M., Nechaev N.V. Chuvstvitel’nyy i bystryy metod odnovremennogo opredeleniya dofamina, noradrenalina, serotonina i 5-oksiindoluksusnoy kisloty v odnoy probe [A Sensitive and Fast Method for Simultaneous Determination of Dopamine, Norepinephrine, Serotonin, and 5-Hydroxyindoleacetic Acid in One Sample]. Laboratornoe delo, 1979, no. 5, pp. 301–303.
7. Shoji H., Mizoguchi K. Acute and Repeated Stress Differentially Regulates Behavioral, Endocrine, Neural Parameters Relevant to Emotional and Stress Response in Young and Aged Rats. Behav. Brain Res., 2010, vol. 211, no. 2, pp. 169–177.
8. Grammatopoulos D.K., Chrousos G.P. Functional Characteristics of CRH Receptors and Potential Clinical Applications of CRH-Receptor Antagonists. Trends Endocrinol. Metab., 2002, vol. 13, no. 10, pp. 436–444.
9. Savic D., Knezevic G., Damjanovic S., Spiric Z., Matic G. The Role of Personality and Traumatic Events in Cortisol Levels – Where Does PTSD Fit in? Psychoneuroendocrinology, 2012, vol. 37, no. 7, pp. 937–947.
10. Groeneweg F.L., Karst H., de Kloet E.R., Joëls M. Rapid Non-Genomic Effects of Corticosteroids and Their Role in the Central Stress Response. J. Endocrinol., 2011, vol. 209, no. 2, pp. 153–167.
11. Varghese F.P., Brown E.S. The Hypothalamic-Pituitary-Adrenal Axis in Major Depressive Disorder: A Brief Primer for Primary Care Physicians. Prim. Care Companion J. Clin. Psychiatry, 2001, vol. 3, no. 4, pp. 151–155.
12. Puglielli L., Tanzi R.E., Kovacs D.M. Alzheimer’s Disease: The Cholesterol Connection. Nat. Neurosci., 2003, vol. 6, no. 4, pp. 345–351.
13. Coburn-Litvak P.S., Tata D.A., Gorby H.E., McCloskey D.P., Richardson G., Anderson B.J. Chronic Corticosterone Affects Brain Weight, and Mitochondrial, but Not Glial Volume Fraction in Hippocampal Area CA3. Neuroscience, 2004, vol. 124, no. 2, pp. 429–438.
14. Doom J.R., Gunnar M.R. Stress Physiology and Developmental Psychopathology: Past, Present, and Future. Dev. Psychopathol., 2013, vol. 25, no. 4, pt. 2, pp. 1359–1373.
15. Duman R.S. Neural Plasticity: Consequences of Stress and Actions of Antidepressant Treatment. Dialogues Clin. Neurosci., 2004, vol. 6, no. 2, pp. 157–169.
16. Krugers H.J., Zhou M., Joëls M., Kindt M. Regulation of Excitatory Synapses and Fearful Memories by Stress Hormones. Front Behav. Neurosci., 2011, vol. 5. Art. no. 62.
17. Seki K., Yoshida S., Jaiswal M.K. Molecular Mechanism of Noradrenaline During the Stress-Induced Major Depressive Disorder. Neural Regen. Res., 2018, vol. 13, no. 7, pp. 1159–1169. DOI: 10.4103/1673-5374.235019
18. McCall J.G., Al-Hasani R., Siuda E.R., Hong D.Y., Norris A.J., Ford C.P., Bruchas M.R. CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety. Neuron, 2015, vol. 87, no. 3, pp. 605–620.
19. Morilak D.A., Barrera G., Echevarria D.J., Garcia A.S., Hernandez A., Ma S., Petre C.O. Role of Brain Norepinephrine in the Behavioral Response to Stress. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, vol. 29, no. 8, pp. 1214–1224.
20. Dietrich M.O., Horvath T.L. Feeding Signals and Brain Circuitry. Eur. J. Neurosci., 2009, vol. 30, no. 9, pp. 1688–1696.
21. Sudakov K.V. Obshchaya teoriya funktsional’nykh sistem [The General Theory of Functional Systems]. Moscow, 1984. 223 p.
22. Oniani T.N. Integrativnaya funktsiya limbicheskoy sistemy [Integrative Function of the Limbic System]. Tbilisi, 1980. 301 p.
23. Leibowitz S.F. Pattern of Drinking and Feeding Produced by Hypothalamic Norepinephrine Injection in the Satiated Rat. Physiol. Behav., 1975, vol. 14, no. 6, pp. 731–742.
24. Luttinger D., Seiden L.S. Increased Hypothalamic Norepinephrine Metabolism After Water Deprivation in the Rat. Brain Res., 1981, vol. 208, no. 1, pp. 147–165.



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North