Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21 ABOUT JOURNAL
|
Section: Medical and biological sciences Download (pdf, 0.4MB )UDC616-056.52DOI10.17238/issn2542-1298.2019.7.4.452AuthorsKseniya D. Ievleva* ORCID:0000-0002-0177-234XTat’yana A. Bairova* ORCID:0000-0003-3704-830X Ekaterina A. Sheneman*, Zhanna G. Ayurova** ORCID: 0000-0002-9100-8360 Varvara V. Bal’zhieva***, Evgeniya A. Novikova* ORCID: 0000-0002-9353-7928 Ol’ga V. Bugun* ORCID: 0000-0002-2162-3683 Lyubov’ V. Rychkova* ORCID:0000-0002-0117-2563 Lyubov’ I. Kolesnikova* ORCID: 0000-0003-3354-2992 *Scientific Сentre for Family Health and Human Reproduction Problems (Irkutsk, Russian Federation) **Kurumkan Central District Hospital (Republic of Buryatia, Russian Federation) ***City Outpatient Clinic No. 6 (Ulan-Ude, Republic of Buryatia, Russian Federation) Corresponding author: Kseniya Ievleva, address: ul. Timiryazeva 16, Irkutsk, 664003, Russian Federation; e-mail: asiy91@mail.ru AbstractObesity is a complex disease contributing to the development of metabolic disorders, including lipid metabolism disorders. All metabolic processes in the body are determined by certain genes, whose polymorphisms can increase the risk of pathologies, such as diabetes mellitus, hypertension, atherosclerosis, etc. One of these polymorphisms is the PPARG2 gene locus (rs1801282; Pro12Ala), which shows contradictory results in different races and ethnic groups. This research aimed to study the prevalence of PPARG2 Pro12Ala in Caucasoid (Russian) and Mongoloid (Buryat) adolescents, as well as estimate the association between this locus and lipid parameters. A total of 395 adolescents (mean age 14.7±1.75 years; 187 boys and 208 girls) participated in the study. They were divided into 4 groups: Caucasoid adolescents with normal body mass (n = 94) and overweight/obese (n = 101), Mongoloid adolescents with normal body mass (n = 110) and overweight/obese (n = 90). Anthropometric (body mass, height, body mass index standard deviation) and biochemical measurements (total cholesterol, triglycerides, high density lipoproteins, low density lipoproteins, and atherogenic coefficient) as well as molecular genetic testing were performed. In the Mongoloid sample we observed significant differences both in terms of genotype frequency (СС, СG, and GG genotypes were found in 58.2, 25.5, and 16.3 % of cases in adolescents with normal body mass and in 73.6, 24.1, and 2.2 % of cases in overweight and obese subjects; р = 0.00004) and in terms of allele frequency (G-allele frequency was 29.1 and 14.4 % in subjects with normal body mass and overweight adolescents, respectively; р = 0.001) of PPARG2 Pro12Ala polymorphism. We found a significant association of G-allele with a decrease in triglyceride level (р = 0.029) and in atherogenic coefficient, as well as with a decrease in the level of high density lipoproteins among Mongoloid adolescents. Thus, Mongoloid adolescents show a protective effect of G-allele of the PPARG2 Pro12Ala polymorphic locus against overweight and obesityKeywordsobesity, overweight, adolescents, lipid metabolism, PPARG2, Caucasoids, MongoloidsReferences1. Overweight and Obesity. Available at: https://www.who.int/gho/ncd/risk_factors/overweight_obesity/bmi_trends_adolescents/en (accessed: 26 January 2019).2. Ozhirenie i izbytochnyy ves [Obesity and Overweight]. Available at: https://www.who.int/ru/news-room/factsheets/detail/obesity-and-overweight (accessed: 26 January 2019). 3. Romantsova T.I. Epidemiya ozhireniya: ochevidnye i veroyatnye prichiny [The Obesity Epidemic: Obvious and Probable Causes]. Ozhirenie i metabolizm, 2011, no. 1, pp. 5–19. 4. Redinger R.N. The Pathophysiology of Obesity and Its Clinical Manifestations. Gastroenterol. Hepatol. (N.Y.), 2007, vol. 3, no. 11, pp. 856–863. 5. Walczak R., Tontonoz P. PPARadigms and PPARadoxes: Expanding Roles for PPARγ in the Control of Lipid Metabolism. J. Lipid Res., 2002, vol. 43, pp. 177–186. 6. Biryukova E.V. Molekulyarno-geneticheskie, gormonal’no-metabolicheskie i klinicheskie aspekty metabolicheskogo sindroma [Molecular-Genetic, Hormonal-Metabolic and Clinical Aspects of the Metabolic Syndrome: Diss.]. Moscow, 2009. 314 p. 7. NCBI, Reference SNP (refSNP) Cluster Report: rs1801282. Available at: https://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?searchType=adhoc_search&type=rs&rs=rs1801282 (accessed: 22 February 2019). 8. Agren J.J., Vidgren H.M., Valve R.S., Laakso M., Uusitupa M.I. Postprandial Response of Individual Fatty Acids in Subjects Homozygous for the Threonine- or Alanine-Encoding Allele in Codon 54 of the Intestinal Fatty Acid Binding Protein 2 Gene. Am. J. Clin. Nutr., 2001, vol. 73, no. 1, pp. 31–35. 9. Hegele R.A., Cao H., Frankowski C., Mathews S.T., Leff T. PPARG F388L, a Transactivation-Deficient Mutant, in Familial Partial Lipodystrophy. Diabetes, 2002, vol. 51, no. 12, pp. 3586–3590. 10. Albala C., Santos J.L., Cifuentes M., Villarroel A.C., Lera L., Liberman C., Angel B., Pérez-Bravo F. Intestinal FABP2 A54T Polymorphism: Association with Insulin-Resistance and Obesity in Women. Obes. Res., 2004, vol. 12, no. 2, pp. 340–345. 11. Lindi V., Sivenius K., Niskanen L., Laakso M., Uusitupa M.I. Effect of the Pro12Ala Polymorphism of the PPAR-γ2 Gene on Long-Term Weight Change in Finnish Non-Diabetic Subjects. Diabetologia, 2001, vol. 44, no. 7, pp. 925–926. 12. Zheleznyakova A.V., Lebedeva N.O., Vikulova O.K., Nosikov V.V., Shamkhalova M.Sh., Shestakova M.V. Risk razvitiya khronicheskoy bolezni pochek u bol’nykh sakharnym diabetom 2 tipa determinirovan polimorfizmom genov NOS3, APOB, KCNJ11, TCF7L2 [Risk of Chronic Kidney Disease in Type 2 Diabetes Determined by Polymorphisms in NOS3, APOB, KCNJ11, TCF7L2 Genes as Compound Effect of Risk Genotypes Combination]. Sakharnyy diabet, 2014, no. 3, pp. 23–30. DOI: 10.14341/DM2014323-30 13. Andrulionytè L., Hyppönen J., Chiasson J.-L., Laakso M. Common Polymorphisms of the PPARγ2 (Pro12Ala) and PGC-1α (Gly482Ser) Genes Are Associated with the Conversion from Impaired Glucose Tolerance to Type 2 Diabetes in the STOP–NIDDM Trial. Diabetologia, 2004, vol. 47, no. 12, pp. 2176–2184. 14. Florez J.C., Jablonski K.A., Sun M.W., Bayley N., Kahn S.E., Shamoon H., Hamman R.F., Knowler W.C., Nathan D.M., Altshuler D. Effects of the Type 2 Diabetes-Associated PPARG P12A Polymorphism on Progression to Diabetes and Response to Troglitazone. J. Clin. Endocrinol. Metab., 2007, vol. 92, no. 4, pp. 1502–1509. 15. Kilpeläinen T.O., Lakka T.A., Laaksonen D.E., Lindström J., Eriksson J.G., Valle T.T., Hämäläinen H., Ilanne-Parikka P., Keinänen-Kiukaanniemi S., Lindi V. SNPs in PPARG Associate with Type 2 Diabetes and Interact with Physical Activity. Med. Sci. Sports Exerc., 2008, vol. 40, no. 1, pp. 25–33. 16. Bairova T.A., Dolgikh V.V., Kolesnikova L.I., Pervushina O.A. Nutritsiogenetika i faktory riska serdechnososudistoy patologii: assotsiativnye issledovaniya v populyatsiyakh Vostochnoy Sibiri [Nutritciogenetics and Risk Factors of Cardiovascular Disease: Associated Research in Eastern Siberia Populations]. Byulleten’ VSNTs SO RAMN, 2013, no. 4, pp. 87–92. 17. Astakhova T.A., Rychkova L.V., Pogodina A.V., Mandzyak T.V., Klimkina Yu.N. Sostoyanie zdorov’ya podrostkov osnovnykh etnosov Vostochnoy Sibiri [Status of Health of Adolescents of Main Ethnic Groups of Eastern Siberia]. Meditsinskiy vestnik Severnogo Kavkaza, 2018, vol. 13, no. 1.1, pp. 14–17. 18. Kolesnikova L.I., Rychkova L.V., Kolesnikov S.I., Darenskaya M.A., Gavrilova O.A., Kravtsova O.V., Grebenkina L.A., Osipova E.V. Otsenka sistemy lipoperoksidatsii i antioksidantnoy zashchity u mal’chikov-podrostkov s ekzogenno-konstitutsional’nym ozhireniem s ispol’zovaniem koeffitsienta okislitel’nogo stressa [Evaluation of the Lipid Peroxidation System and Antioxidant Defence in Adolescent Boys with Exogenous-Constitutional Obesity Using Coefficient of Oxidative Stress]. Voprosy pitaniya, 2018, vol. 87, no. 1, pp. 28–34. 19. Kolesnikova L.I., Rychkova L.V., Darenskaya M.A., Grebenkina L.A., Gavrilova O.A., Zhdanova L.V., Buldaeva E.A., Kolesnikov S.I. Pokazateli redoks-statusa u podrostkov-mongoloidov pri razvitii ekzogennokonstitutsional’nogo ozhireniya i zhirovogo gepatoza [Redox Status Parameters in Mongoloid Adolescents with Exogenous-Constitutional Obesity and Fatty Hepatosis]. Voprosy pitaniya, 2018, vol. 87, no. 5, pp. 13–19. DOI: 10.24411/0042-8833-2018-10048 20. Rychkova L.V., Ayurova Zh.G., Pogodina A.V., Kosovtseva A.S. Faktory riska razvitiya ozhireniya u podrostkov etnicheskikh grupp sel’skikh rayonov Respubliki Buryatiya: rezul’taty poperechnogo issledovaniya [Risk Factors for Obesity in Adolescents of Ethnic Groups in Rural Areas of the Republic of Buryatia: A Cross-Sectional Study]. Voprosy sovremennoy pediatrii, 2017, vol. 16, no. 6, pp. 509–515. DOI: 10.15690/VSP.V16I6.1824 21. Sheneman E.A. Kliniko-metabolicheskie, molekulyarno-geneticheskie i psikhologicheskie kharakteristiki tipov ekzogenno-konstitutsional’nogo ozhireniya u devochek podrostkovogo vozrasta [Clinical and Metabolic, Molecular Genetic, and Psychological Characteristics of Types of Exogenous-Constitutional Obesity in Adolescent Girls: Diss.]. Irkutsk, 2018. 164 p. 22. Stryjecki S., Peralta-Romero J., Alyass A., Karam-Araujo R., Suarez F., Gomez-Zamudio J., Burguete-Garcia A., Cruz M., Meyre D. Association Between PPAR-γ2 Pro12Ala Genotype and Insulin Resistance Is Modified by Circulating Lipids in Mexican Children. Sci. Rep., 2016, vol. 6. Art. no. 24472. 23. Passaro A., Nora E.D., Marcello C., Di Vece F., Morieri M.L., Sanz J.M., Bosi C., Fellin R., Zuliani G. PPARγ Pro12Ala and ACE ID Polymorphisms Are Associated with BMI and Fat Distribution, but Not Metabolic Syndrome. Cardiovasc. Diabetol., 2011, vol. 10. Art. no. 112. 24. Milewicz A., Tworowska-Bardziñska U., Dunajska K., Jêdrzejuk D., Lwow F. Relationship of PPARgamma2 Polymorphism with Obesity and Metabolic Syndrome in Postmenopausal Polish Women. Exp. Clin. Endocrinol. Diabetes, 2009, vol. 117, no. 10, pp. 628–632. 25. Deeb S.S., Fajas L., Nemoto M., Pihlajamäki J., Mykkänen L., Kuusisto J., Laakso M., Fujimoto W., Auwerx J. A Pro12Ala Substitution in PPARγ2 Associated with Decreased Receptor Activity, Lower Body Mass Index and Improved Insulin Sensitivity. Nat. Genet., 1998, vol. 20, no. 3, pp. 284–287. 26. Bondar’ I.A., Filipenko M.L., Shabel’nikova O.Yu., Sokolova E.A. Assotsiatsiya polimorfnogo markera rs1801282 gena PPARG Pro12Ala s sakharnym diabetom 2-go tipa v Novosibirskoy oblasti i drugikh populyatsiyakh [Association Between Gene PPARG rs1801282 Pro12Ala and Type 2 Diabetes in Novosibirsk Region and Other Populations]. Sibirskiy meditsinskiy zhurnal, 2014, vol. 29, no. 2, pp. 75–78. 27. Cole T.J., Bellizzi M.C., Flegal K.M., Dietz W.H. Establishing a Standard Definition for Child Overweight and Obesity Worldwide: International Survey. BMJ, 2000, vol. 320, no. 7244, pp. 1240–1243. 28. Bhatt S.P., Misra A., Sharma M., Luthra K., Guleria R., Pandey R.M., Vikram N.K. Ala/Ala Genotype of Pro12Ala Polymorphism in the Peroxisome Proliferator-Activated Receptor-γ2 Gene Is Associated with Obesity and Insulin Resistance in Asian Indians. Diabetes Technol. Ther., 2012, vol. 14, no. 9, pp. 828–834. 29. Morini E., Tassi V., Capponi D., Ludovico O., Dallapiccola B., Trischitta V., Prudente S. Interaction Between PPARγ2 Variants and Gender on the Modulation of Body Weight. Obesity, 2008, vol. 16, no. 6, pp. 1467–1470. 30. Wang X., Liu J., Ouyang Y., Fang M., Gao H., Liu L. The Association Between the Pro12Ala Variant in the PPARγ2 Gene and Type 2 Diabetes Mellitus and Obesity in a Chinese Population. PLoS One, 2013, vol. 8, no. 8. Art. no. 8:e71985. 31. Larsen T.M., Toubro S., Astrup A. PPARgamma Agonists in the Treatment of Type II Diabetes: Is Increased Fatness Commensurate with Long-Term Efficacy? Int. J. Obes. Relat. Metab. Disord., 2003, vol. 27, no. 2, pp. 147–161. |
Make a Submission
INDEXED IN:
|