Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21 ABOUT JOURNAL
|
Section: Physiology Download (pdf, 1.2MB )UDC611.4+591.4DOI10.17238/issn2542-1298.2020.8.1.61AuthorsVladislav Ya. Yurchinskiy*/** ORCID: 0000-0003-3019-3053*Smolensk State University (Smolensk, Russian Federation) **Smolensk State Medical University (Smolensk, Russian Federation) Corresponding author: Vladislav Yurchinskiy, address: ul. Przheval’skogo 4, Smolensk, 214000, Russian Federation; e-mail: zool72@mail.ru AbstractFor the first time, using the methods of light microscopy, a comparative study was conducted into the morphological variability of Hassall’s corpuscles in mature land vertebrates, including humans. The material for the study included 502 thymus glands from 16 species of mature vertebrate animals belonging to four Chordata classes: Amphibia, Reptilia, Aves, and Mammalia. Histological thymus specimens were prepared by the standard method in the sagittal and horizontal planes. All Hassall’s corpuscles, depending on their stage of development, were divided into three relative groups: young, mature, and ageing. The number of Hassall’s corpuscles was counted at different stages of maturity on a conventional unit of the shear area (100 μm) and the percent area occupied by the thymic bodies was determined. It was established that in all vertebrate animals and humans, Hassall’s corpuscles, as they mature, go through similar stages of morphological transformations. At the same time, in representatives of various classes and orders, depending on the level of organization and peculiarities of their biology, a different number of epithelial cells are included in the composition of the Hassall’s corpuscle at the stage of its formation. We found a dependence of the relative size and number of thymic bodies on the characteristics of the organism’s biology and environmental factors. For instance, in animals from the natural environment, compared with vertebrates exposed to a number of anthropogenic factors (American mink and human), the relative size of Hassall’s corpuscles is increased at all stages of maturity. In addition, the analysis of the results showed that the morphology of Hassall’s corpuscles in legless creatures (snakes) differs significantly from that of other animals living in the natural environment. On the basis of this study, conclusions are drawn about the specificity of the functional role of Hassall’s corpuscles associated with the maintenance of immunological homeostasis.For citation: Yurchinskiy V.Ya. Peculiarities of the Morphology of Hassall’s Corpuscles in Mature Vertebrate Animals and Humans (Chordata, Vertebrata). Journal of Medical and Biological Research, 2020, vol. 8, no. 1, pp. 61–71. DOI: 10.17238/issn2542-1298.2020.8.1.61 Keywordsthymus, Hassall’s corpuscles, vertebrates, comparative morphologyReferences1. Beloveshkin A.G. Morfogenez epitelial’nykh kletok telets Gassalya timusa cheloveka [Morphogenesis of Epithelial Cells of Hassall’s Corpuscles in Human Thymus]. Meditsinskiy zhurnal, 2012, no. 2, pp. 19–22.2. Beloveshkin A.G. K voprosu o klassifikatsii telets Gassalya timusa cheloveka [On the Classification of Thymic Hassall’s Corpuscles in Humans]. Molodoy uchenyy, 2013, no. 4, pp. 631–634. 3. Bodey B., Bodey B. Jr., Siegel S.E., Kaiser H.E. Novel Insights into the Function of the Thymic Hassall’s Bodies. In Vivo, 2000, vol. 14, no. 3, pp. 407–418. 4. Mikušová R., Mešťanová V., Polák Š., Varga I. What Do We Know About the Structure of Human Thymic Hassall’s Corpuscles? A Histochemical, Immunohistochemical, and Electron Microscopic Study. Ann. Anat., 2017, vol. 211, pp. 140–148. 5. Miller C.N., Proekt I., von Moltke J., Wells K.L., Rajpurkar A.R., Wang H., Rattay K., Khan I.S., Metzger T.C., Pollack J.L., et al. Thymic Tuft Cells Promote an IL-4-Enriched Medulla and Shape Thymocyte Development. Nature, 2018, vol. 559, no. 7715, pp. 627–631. 6. Wang J., Sekai M., Matsui T., Fujii Y., Matsumoto M., Takeuchi O., Minato N., Hamazaki Y. Hassall’s Corpuscles with Cellular-Senescence Features Maintain IFNα Production Through Neutrophils and pDC Activation in the Thymus. Int. Immunol., 2018, vol. 31, no. 3, pp. 127–139. 7. Beloveshkin A.G. Sistemnaya organizatsiya telets Gassalya [The Systemic Organization of Hassall’s Corpuscles]. Minsk, 2014. 180 p. 8. Bowden T.J., Cook P., Rombout J.H.W.M. Development and Function of the Thymus in Teleosts. Fish Shellfish Immunol., 2005, vol. 19, no. 5, pp. 413–427. 9. Kannan T.A., Ramesh G., Ushakumary S., Dhinakarraj G., Vairamuthu S. Thymic Hassall’s Corpuscles in Nandanam Chicken – Light and Electronmicroscopic Perspective (Gallus domesticus). J. Anim. Sci. Technol., 2015, vol. 57. Art. no. 30. 10. Yakimenko L.L., Luppova I.M., Matsinovich A.A., Yakimenko V.P., Grushin V.N. Morfofunktsional’nye osobennosti telets Gassalya timusa pozvonochnykh [Morphofunctional Features of Thymic Hassall’s Corpuscles in Vertebrates]. Uchenye zapiski UO VGAVM, 2012, vol. 48, no. 1, pp. 150–153. 11. Asghar A., Syed Y.M., Nafis F.A. Polymorphism of Hassall’s Corpuscles in Thymus of Human Fetuses. Int. J. Appl. Basic Med. Res., 2012, vol. 2, no. 1, pp. 7–10. 12. Yurchinskij V.Ja. Age-Related Morphological Changes in Hassall’s Corpuscles of Different Maturity in Vertebrate Animals and Humans. Adv. Gerontol., 2016, vol. 6, no. 2, pp. 117–122. 13. Vinogradova N.V., Dol’nik V.R., Efremov V.D., Paevskiy V.A. Opredelenie pola i vozrasta vorob’inykh ptits fauny SSSR [Determination of the Sex and Age of Old World Sparrows in the USSR]. Moscow, 1976. 189 p. 14. Klevezal’ G.A. Printsipy i metody opredeleniya vozrasta mlekopitayushchikh [Principles and Methods for Determining the Age of Mammals]. Moscow, 2007. 283 p. 15. Peskov V.N., Malyuk A.Yu., Petrenko N.A. Lineynye razmery tela i biologicheskiy vozrast amfibiy i reptiliy na primere Lacerta agilis (Linnaeus, 1758) i Pelophylax ridibundus (Pallas, 1771) [Linear Dimensions of Body and Biological Age of Amphibians and Reptiles on Example of Lacerta аgilis (Linnaeus, 1758) and Pelophylax ridibundus (Pallas, 1771)]. Vestnik Tomskogo gosudarstvennogo universiteta, 2013, vol. 18, no. 6, pp. 3055–3058. 16. Merkulov G.A. Kurs patologogistologicheskoy tekhniki [A Course of Pathohistological Technology]. Leningrad, 1969. 424 p. 17. Zayrat’yants O.V., Kartasheva V.I., Tarasova L.R., Trishkina N.V. Funktsional’naya morfologiya timusa pri sistemnoy krasnoy volchanke [Functional Morphology of the Thymus in Systemic lupus erythematosus]. Arkhiv patologii, 1990, no. 2, pp. 25–31. 18. Raica M., Encică S., Motoc A., Cîmpean A.M., Scridon T., Bârsan M. Structural Heterogeneity and Immunohistochemical Profile of Hassall Corpuscles in Normal Human Thymus. Ann. Anat., 2006, vol. 188, no. 4, pp. 345–352. 19. Kharchenko V.P., Sarkisov D.S., Vetshev P.S., Galil-Ogly G.A., Zayrat’yants O.V. Bolezni vilochkovoy zhelezy [Thymus Diseases]. Moscow, 1998. 232 p. 20. Matsui N., Ohigashi I., Tanaka K., Sakata M., Furukawa T., Nakagawa Y., Kondo K., Kitagawa T., Yamashita S., Nomura Y., Takahama Y., Kaji R. Increased Number of Hassall’s Corpuscles in Myasthenia Gravis Patients with Thymic Hyperplasia. J. Neuroimmunol., 2014, vol. 269, no. 1–2, pp. 56–61. |
Make a Submission
INDEXED IN:
|