Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21 ABOUT JOURNAL
|
Section: Physiology Download (pdf, 0.4MB )UDC612.017.2+612.821.33+612.17DOI10.37482/2542-1298-Z002AuthorsDenis B. Demin* ORCID: 0000-0001-7912-9226Elena V. Krivonogova* ORCID: 0000-0003-4225-5872 Ol’ga V. Krivonogova* ORCID: 0000-0002-7267-8836 Liliya V. Poskotinova* ORCID: 0000-0002-7537-0837 Irina N. Gorenko* ORCID: 0000-0003-3097-9427 Viktoriya A. Popkova* ORCID: 0000-0002-0818-7274 *N. Laverov Federal Center for Integrated Arctic Research, Russian Academy of Sciences (Arkhangelsk, Russian Federation) Corresponding author: Denis Demin, address: prosp. Lomonosova 249, Arkhangelsk, 163000, Russian Federation; e-mail: denisdemin@mail.ru AbstractThis paper studied the dynamics of salivary cortisol level and parameters of the cardiovascular system in 30 healthy male volunteers aged 18–20 years, depending on the stage of hypothermia during experimental whole-body cooling. The subjects were divided into two equal groups – with moderate and mild hypothermia – according to the body temperature median (34.1 ºС) in the total sample during cooling. The experiment included three 10-minute stages: at rest at the temperature of +20 ºС, in a cold chamber at –20 ºС, and warming at +20 ºС. During each stage of the study, heart rate, blood pressure, heart rate variability, and temperature in the ear canal were recorded; saliva samples were taken to determine free cortisol levels. It was shown that during cooling, the body temperature of the subjects significantly decreased by an average of 1.5–2.7 ºС. During cooling, both groups demonstrated a decrease in salivary cortisol levels, stress index, and heart rate, as well as an increase in total heart rate variability power and blood pressure. During warming, cardiovascular indices tended to baseline, while salivary cortisol levels continued to decline. Subjects with moderate hypothermia (33.4 °C) showed a less pronounced baroreflex response (a slight decrease in heart rate), accompanied by a more pronounced vascular response (a significant increase in blood pressure) and a significant decrease in salivary cortisol levels by the end of the study. In individuals with mild hypothermia (34.8 °C) we observed a more pronounced baroreflex in the form of a significant decrease in heart rate in response to an increase in blood pressure. A decrease in salivary cortisol in combination with cold-induced hypertension and greater vagal effects on the heart rhythm may indicate a more successful adaptation of the body to cold.For citation: Demin D.B., Krivonogova E.V., Krivonogova O.V., Poskotinova L.V., Gorenko I.N., Popkova V.A. Changes in Salivary Cortisol Level at Cardiovascular Response to Whole-Body Cold Exposure. Journal of Medical and Biological Research, 2020, vol. 8, no. 2, pp. 121–131. DOI: 10.37482/2542-1298-Z002 Keywordssalivary cortisol, blood pressure, heart rate variability, whole-body cold air exposure, hypothermiaReferences1. Novikov V.S., Soroko S.I. Fiziologicheskie osnovy zhiznedeyatel’nosti cheloveka v ekstremal’nykh usloviyakh [Physiological Bases of Human Life in Extreme Conditions]. St. Petersburg, 2017. 476 p.2. Kubasov R.V., Barachevskiy Yu.E., Ivanov A.M., Kubasova E.D. Simpatoadrenalovaya i gipofizarnonadpochechnikovaya aktivnost’ u sotrudnikov MVD Rossii pri razlichnykh urovnyakh professional’noy napryazhennosti [Sympathoadrenal and Hypophysial-Adrenal Activity in Law Enforcement Staff Depending on Professional Load]. Ekologiya cheloveka, 2015, no. 6, pp. 9–14. 3. Hintsala H.E., Kiviniemi A.M., Tulppo M.P., Helakari H., Rintamäki H., Mäntysaari M., Herzig K.-H., KeinänenKiukaanniemi S., Jaakkola J.J.K., Ikäheimo T.M. Hypertension Does Not Alter the Increase in Cardiac Baroreflex Sensitivity Caused by Moderate Cold Exposure. Front. Physiol., 2016, vol. 7. Art. no. 204. 4. Niven D.J., Gaudet J.E., Laupland K.B., Mrklas K.J., Roberts D.J., Stelfox H.T. Accuracy of Peripheral Thermometers for Estimating Temperature: A Systematic Review and Meta-Analysis. Ann. Intern. Med., 2015, vol. 163, no. 10, pp. 768–777. 5. Louie J.P. Hypothermia and Cold-Related Injuries. Zaoutis L.B., Chiang V.W. (eds.). Comprehensive Pediatric Hospital Medicine. Philadelphia, 2007, pp. 1153–1157. 6. Castellani J.W., Young A.J. Human Physiological Responses to Cold Exposure: Acute Responses and Acclimatization to Prolonged Exposure. Auton. Neurosci., 2016, vol. 196, pp. 63–74. 7. Poskotinova L.V., Krivonogova O.V., Zaborskiy O.S. Pokazateli serdechno-sosudistoy sistemy u mal’chikov v vozraste 14-15 let pri kratkosrochnom obuchenii s biologicheskoy obratnoy svyaz’yu dlya kontrolya obshchey variabel’nosti serdechnogo ritma posle trenirovki skorostno-silovykh kachestv: eksperimental’noe kontroliruemoe issledovanie [Indicators of a Cardiovascular System at 14-15 Years Old Boys at Short-Term Biofeedback Training for Controlling of General Heart Rate Variability After Speed and Power Training: Experimental Controlled Study]. Voprosy sovremennoy pediatrii, 2019, vol. 18, no. 3, pp. 167–174. 8. Tyler C.J., Reeve T., Cheung S.S. Cold-Induced Vasodilation During Single Digit Immersion in 0 °C and 8 °C Water in Men and Women. PLoS One, 2015, vol. 10, no. 4. Art. no. e0122592. 9. Wilson D. McGraw-Hill’s Manual of Laboratory and Diagnostic Tests. McGraw-Hill Education, 2007. 688 p. 10. Dorn L.D., Lucke J.F., Loucks T.L., Berga S.L. Salivary Cortisol Reflects Serum Cortisol: Analysis of Circadian Profiles. Ann. Clin. Biochem., 2007, vol. 44, no. 3, pp. 281–284. 11. Nicolson N.A., van Diest R. Salivary Cortisol Patterns in Vital Exhaustion. J. Psychosom. Res., 2000, vol. 49, no. 5, pp. 335–342. 12. Goodman W.K., Janson J., Wolf J.M. Meta-Analytical Assessment of the Effects of Protocol Variations on Cortisol Responses to the Trier Social Stress Test. Psychoneuroendocrinology, 2017, vol. 80, pp. 26–35. 13. Guazzo E.P., Kirkpatrick P.J., Goodyer I.M., Shiers H.M., Herbert J. Cortisol, Dehydroepiandrosterone (DHEA), and DHEA Sulfate in the Cerebrospinal Fluid of Man: Relation to Blood Levels and Effects of Age. J. Clin. Endocrinol. Metab., 1996, vol. 81, no. 11, pp. 3951–3960. 14. Bober J.F., Weller E.B., Weller R.A., Tait A., Fristad M.A., Preskorn S.H. Correlation of Serum and Salivary Cortisol Levels in Prepubertal School-Aged Children. J. Am. Acad. Child Adolesc. Psychiatry, 1988, vol. 27, no. 6, pp. 748–750. 15. Kirschbaum C., Hellhammer D.H. Salivary Cortisol. Fink G. (ed.). Encyclopedia of Stress. San Diego, 2000. Vol. 3, pp. 379–384. 16. Dzhaber Mayakhi Mokhammed T., Klichkhanov N.K. Vliyanie dalargina na soderzhanie gormonov gipofizarnonadpochechnikovogo i gipofizarno-tireoidnogo endokrinnogo kompleksov v krovi krys pri gipotermii [Effect of Dalargin on Pituitary-Adrenal and Pituitary-Thyroid Endocrine Complex Hormones Content in the Blood of Rats During Hypothermia]. Izvestiya Samarskogo nauchnogo tsentra RAN, 2012, vol. 14, no. 5, pp. 273–277. 17. Nadol’nik L.I., Galitskiy E.A., Beluga V.V., Vinogradov V.V. Vydelenie i sravnitel’naya kharakteristika transkortina krysy v norme i pri eksperimental’noy nedostatochnosti krovoobrashcheniya [Isolation and Comparative Characterization of Rat Transcortin Under Normal Conditions and in Experimental Circulatory Failure]. Voprosy meditsinskoy khimii, 1988, vol. 34, no. 5, pp. 25–30. 18. Zimmer P., Buttlar B., Halbeisen G., Walther E., Domes G. Virtually Stressed? A Refined Virtual Reality Adaptation of the Trier Social Stress Test (TSST) Induces Robust Endocrine Responses. Psychoneuroendocrinology, 2019, vol. 101, pp. 186–192. 19. Davis J., Mortill R., Fawcett J., Upton V., Bondy P.K., Spiro H.M. Apprehension and Elevated Serum Cortisol Levels. J. Psychosom. Res., 1962, vol. 6, no. 2, pp. 83–86. 20. French J., Bisson R.U., Neville K.J., Mitcha J., Storm W.F. Crew Fatigue During Simulated, Long Duration B-1B Bomber Missions. Aviat. Space Environ. Med., 1994, vol. 65, suppl. 5, pp. A1–A6. |
Make a Submission
INDEXED IN:
|