CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

The Capabilities of Haematology Analysers for Assessing the Bodyʼs Physiological and Pathological Conditions (Review). P. 89–101

Версия для печати

Section: Review articles

Download (pdf, 0.5MB )

UDC

[612.11+616-092]:616-71

DOI

10.37482/2687-1491-Z047

Authors

Aliya R. Shamratova* ORCID: 0000-0001-8574-2617
Valentina G. Shamratova* ORCID: 0000-0002-7633-4264
Aliya F. Kayumovа* ORCID: 0000-0003-1983-1392
Klara R. Ziyakaeva* ORCID: 0000-0002-3923-2736
*Bashkir State Medical University
(Ufa, Republic of Bashkortostan, Russian Federation)
Corresponding author: Aliya Shamratova, address: ul. Pushkina 96/98, korp. 7, Ufa, 450001, Respublika Bashkortostan, Russian Federation; e-mail: arshamratova@gmail.com

Abstract

Haematology analysers have become an intrinsic part of contemporary medical practice and are used by specialists in various fields of medicine to diagnose diseases and predict their course and outcome. Moreover, the readings of these devices are currently in demand in experimental biology and medicine, toxicology, and veterinary medicine. This review examines the capabilities of modern models of haematology analysers and prospects for their use. New technical approaches combined with already known methods and statistical calculation parameters allow us to significantly expand the range of analyser output. It is shown that the introduction of programs for statistical calculations of a large number of indices and parameters of the distribution of cell populations by their volumes opens up new prospects for describing and evaluating not only pathological, but also physiological states of the body. We analysed both Russian and foreign literature on the use of erythrocyte and platelet indices to diagnose cardiovascular and other pathologies. Taking into account the indicators of corpuscular volume based on histograms and analysing statistical parameters of blood cell distribution enhance our understanding of the structure of blood cell populations, significantly increase the information content of research and can serve as an additional criterion for quantitative assessment of the bodyʼs conditions and diagnosis of diseases. Statistical characteristics such as asymmetry coefficient, kurtosis, and standard deviation of empirical erythrograms and leukograms allow us to assess the degree of anisocytosis and cellular heterogeneity, as well as the ratio of different populations. Studying the volume characteristics of blood cells based on histogram analysis significantly improves the effectiveness of using haematology analysers in evaluating various pathological and physiological conditions of the body.
For citation: Shamratova A.R., Shamratova V.G., Kayumovа A.F., Ziyakaeva K.R. The Capabilities of Haematology Analysers for Assessing the Bodyʼs Physiological and Pathological Conditions (Review). Journal of Medical and Biological Research, 2021, vol. 9, no. 1, pp. 89–101. DOI: 10.37482/2687-1491-Z047

Keywords

haematology analyser, blood cell indices, blood cell volume, blood cell histogram

References

1. Agarkov N.M., Golovchenko O.V., Blinkov Yu.A., Kulabukhov A.S., Yakovlev S.A., Budnik I.V., Afanasova E.P. Diagnostika ostrogo endometrita po gematologicheskim pokazatelyam i s uchetom diskriminantnykh modeley [Diagnosis
of Acute Endometritis on Hematologic Indicators, and Given Discriminant Models]. Klinicheskaya laboratornaya diagnostika, 2018, vol. 63, no. 6, pp. 361–364.
2. Kozinets G.I., Vysotskiy V.V. Krovʼ [Blood]. Moscow, 2014. 208 p.
3. Pavlova V.Yu. Vozmozhnosti issledovaniya pokazateley obshchego analiza krovi na sovremennykh gematologicheskikh analizatorakh [How to Interpret Complete Blood Count Using the Possibilities of Modern Hematology Analyzers]. Fundamentalʼnaya i klinicheskaya meditsina, 2016, vol. 1, no. 1, pp. 98–108.
4. Shamratova A.R., Malʼkhanov V.B., Zaynutdinova G.Kh. Methods for Diagnosing Rheumatoid Uevitis. Patent RF no. 2314534, 2006. 5 p. (in Russ.).
5. Khudyakova N.V., Pchelin I.Yu., Shishkin A.N., Kulibaba T.G. Otsenka vzaimosvyazi insulinorezistentnosti i syvorotochnogo urovnya gomotsisteina s gematologicheskimi pokazatelyami patsientov s abdominalʼnym ozhireniem [Evaluation of Interrelation Between Insulin Resistance, Serum Homocysteine Level and Hematologic Parameters of Patients with Abdominal Obesity]. Zdorovʼe – osnova chelovecheskogo potentsiala: problemy i puti ikh resheniya, 2015, vol. 10, no. 2, pp. 647–648.
6. Aznabaev M.T., Latypova E.A., Malʼkhanov V.B., Shamratova A.R. Method for Predicting the Clinical Course of Chlamydial Conjunctivitis. Patent RF no. 2264627, 2005. 5 p. (in Russ.).
7. Zubrikhina G.N., Blindarʼ V.N., Matveeva I.I. Vozmozhnosti sovremennogo avtomatizirovannogo klinicheskogo analiza krovi v differentsialʼnoy diagnostike istinnogo i pereraspredelitelʼnogo (funktsionalʼnogo) defitsita zheleza pri anemicheskom sindrome u onkologicheskikh bolʼnykh [The Possibilities of Modern Automated Clinical Blood Analysis in Differentiated Diagnostic of True and Redistributing (Functional) Iron Deficiency Under Anemic Syndrome in Oncologic Patients]. Klinicheskaya laboratornaya diagnostika, 2014, vol. 59, no. 5, pp. 21–25.
8. Melikyan A.L., Kovrigina A.M., Subortseva I.N., Shuvaev V.A., Afanasiev B.V., Ageeva T.A., Baikov V.V., Vinogradova O.Yu., Golenkov A.K., Gritsaev S.V., Zaritskiy A.Yu., Kaplanov K.D., Lomaia E.G., Martynkevich I.S., Morozova E.V., Pospelova T.I., Sokolova M.A., Sudarikov A.B., Turkina A.G., Shatokhin Yu.V., Savchenko V.G. National Clinical Recommendations for Diagnosis and Therapy of Ph-Negative Myeloproliferative Neoplasms (Polycythemia Vera, Essential Thrombocythemia, Primary Myelofibrosis) (Edition 2018). Russ. J. Hematol. Transfus., 2018, no. 63, pp. 275–315 (in Russ.).
9. Kahng J., Kim Y., Kim M., Oh E.J., Park Y.J., Han K. Flow Cytometric White Blood Cell Differential Using CytoDiff Is Excellent for Counting Blasts. Ann. Lab. Med., 2015, vol. 35, no. 1, pp. 28–34. DOI: 10.3343/alm.2015.35.1.28
10. Mininkova A.I., Lugovskaya S.A., Pochtarʼ M.E., Khuazheva N.K., Tlevtsezheva A.A., Vorobʼev V.I., Lavrentʼev I.S., Emelʼyanova E.B., Dolgov V.V. Diagnosticheskiy skrining ostrykh leykozov s ispolʼzovaniem novykh tekhnologiy avtomatizirovannogo analiza krovi [The Diagnostic Screening of Acute Leukemia Using New Technologies of Automated Blood Analysis]. Klinicheskaya laboratornaya diagnostika, 2018, vol. 63, no. 4, pp. 228–233.
11. Piyanzin A.I., Zhilin S.I., Ivchenko E.V., Miller Yu.V., Fedorov A.V., Anikina Z.F., Malakhova T.I. Otsenka krovetvoreniya u nedonoshennykh novorozhdennykh po pokazatelyam sovremennogo gematologicheskogo analizatora s ispolʼzovaniem razlichnykh matematicheskikh metodov [Assessment of Haematopoiesis in Premature Newborns According to the Indicators of a Modern Hematological Analyzer Using Various Mathematical Methods]. Sovremennaya perinatologiya: organizatsiya, tekhnologii, kachestvo [Perinatology Today: Organization, Technologies, Quality]. Moscow, 2015, pp. 15–16.
12. Patrakeeva V.P. Vzaimosvyazʼ funktsionalʼnogo sostoyaniya eritrotsitov i limfotsitov perifericheskoy krovi u prakticheski zdorovykh lyudey [Interrelation of the Functional State of Erythrocytes and Lymphocytes of Peripheral Blood in Healthy People]. Vestnik uralʼskoy meditsinskoy akademicheskoy nauki, 2018, vol. 15, no. 2, pp. 205–210. DOI: 10.22138/2500-0918-2018-15-2-205-210
13. Ustʼyantseva I.M., Khokhlova O.I., Goloshumov N.P., Agadzhanyan V.V. Innovatsionnye laboratornye tekhnologii v diagnostike sepsisa [Innovative Laboratory Technologies in Diagnosis of Sepsis]. Politravma, 2018, no. 1, pp. 52–59.
14. Savchenko V.G., Parovichnikova E.N., Afanasʼev B.V., Gritsaev S.V., Semochkin S.V., Bondarenko S.N., Troitskaya V.V., Sokolov A.N., Kuzʼmina L.A., Klyasova G.A., Gaponova T.V., Baranova O.Yu., Lapin V.A., Konstantinova T.S., Samoylova O.S., Kaporskaya T.S., Shatokhin S.V. Natsionalʼnye klinicheskie rekomendatsii po diagnostike i lecheniyu ostrykh mieloidnykh leykozov vzroslykh [National Clinical Guidelines for the Diagnosis and Treatment of Acute Myeloid Leukemia in Adults]. Gematologiya i transfuziologiya, 2014, vol. 59, no. 1-S2, pp. 2–29.
15. Klochkova G.N., Belyaeva S.S., Tikunova T.S. Gematologicheskie pokazateli sistemy krovi bolʼnykh leykozom [Haematological Parameters of the Blood System in Patients with Leukemia]. Nauchnyy rezulʼtat. Ser.: Fiziologiya, 2016, vol. 2, no. 2, pp. 34–40.
16. Arber D.A., Orazi A., Hasserjian R., Thiele J., Borowitz M., Le Beau M.M., Bloomfield C.D., Cazzola M., Vardiman J.W. The 2016 Revision to the World Health Organization Classification of Myeloid Neoplasms and Acute Leukemia. Blood, 2016, vol. 127, pp. 2391–2405. DOI: 10.1182/blood-2016-03-643544
17. Vishnevskaya T.Ya., Abramova L.L. K voprosu o vzaimosvyazi struktury limfoidnoy tkani selezenki s gematologicheskimi pokazatelyami krolikov pri stresse [On the Correlation Between the Structure of Spleen Lymphoid Tissue and Haematological Parameters in Rabbits Under Stress]. Aktualʼnye problemy nezaraznoy patologii zhivotnykh [Current Issues of Non-Infectious Animal Pathology]. Orenburg, 2014, pp. 146–150.
18. Fedulova L.V., Sorokina A.A. Vzaimosvyazʼ eksperimentalʼnogo gastrita s gematologicheskimi pokazatelyami krovi [Correlation Between Experimental Gastritis and Haematological Blood Parameters]. Evraziyskiy Soyuz Uchenykh, 2015, no. 7-6, pp. 117–120.
19. Ziyakaeva K.R., Gabdulkhakova I.R., Zaynetdinova A.T., Shamratova V.G., Kayumova A.F., Fazlyakhmetova M.Ya. Dinamika kolichestvennykh i morfofunktsionalʼnykh pokazateley krasnoy krovi pri dlitelʼnom vozdeystvii mednotsinkovoy kolchedannoy rudy v eksperimente [Dynamics of Quantitative and Morphofunctional Blood Parameters Under Prolonged Experimental Exposure to Copper-Zinc Pyrite Ore]. Sovremennye problemy nauki i obrazovaniya, 2017, no. 6, p. 31. Available at: http://www.science-education.ru/ru/article/view?id=27141 (accessed: 17 June 2020).
20. Karimov R.R., Gabdulkhakova I.R., Shamratova A.R., Fazlyakhmetova M.Ya., Ziyakaeva K.R., Samokhodova O.V., Kayumova A.F. Issledovanie mekhanizmov razvitiya anemii pri vozdeystvii polikhlorirovannykh bifenilov [Study on the Mechanisms of Anaemia Development Under Exposure to Polychlorinated Biphenyls]. Sovremennye problemy sistemnoy regulyatsii fiziologicheskikh funktsiy [Current Problems of Systemic Regulation of Physiological Functions]. Moscow, 2015, pp. 298–302.
21. Myasoedov Yu.M. Avtomatizirovannyy analiz parametrov krovi laboratornykh zhivotnykh [Automated Analysis of Blood Parameters of Laboratory Animals]. Vestnik Kurskoy gosudarstvennoy selʼskokhozyaystvennoy akademii, 2017, no. 5, pp. 25–28.
22. Ball S., Arevalo M., Wongsaengsak S., Dennis J.A., Nugent K. Implications of Mean Platelet Volume in Health and Disease: A Large Population Study on Data from National Health and Nutrition Examination Survey. Thromb. Res., 2019, vol. 175, pp. 90–94. DOI: 10.1016/j.thromres.2019.01.011
23. Puchinskaya M.V., Pochtavtsev A.Yu. Klinicheskoe znachenie trombotsitarnykh indeksov v kardiologii [Clinical Significance of Platelet Indices in Cardiology]. Voennaya meditsina, 2011, no. 2, pp. 77–81.
24. Depoorter M., Goletti S., Latinne D., Defour J. Optimal Flagging Combinations for Best Performance of Five Blood Cell Analyzers. Int. J. Lab. Hematol., 2015, vol. 37, no. 1, pp. 63–70. DOI: 10.1111/ijlh.12238
25. Busque L., Porwit A., Day R., Olney H.J., Leber B., Éthier V., Sirhan S., Foltz L., Prchal J., Kamel-Reid S., Karsan A., Gupta V. Laboratory Investigation of Myeloproliferative Neoplasms (MPNs): Recommendations of the Canadian MPN Group. Am. J. Clin. Pathol., 2016, vol. 146, no. 4, pp. 408–422. DOI: 10.1093/ajcp/aqw131
26. Rabizadeh E., Pickholtz I., Barak M., Isakov E., Zimra Y., Froom P. Acute Leukemia Detection Rate by Automated Blood Count Parameters and Peripheral Smear Review. Int. J. Lab. Hematol., 2015, vol. 37, no. 1, pp. 44–49. DOI: 10.1111/ijlh.12225
27. Shelat S.G., Canfield W., Shibutani S. Differences in Detecting Blasts Between ADVIA 2120 and Beckman-Coulter LH750 Hematology Analyzers. Int. J. Lab. Hematol., 2010, vol. 32, no. 1, pt. 2, pp. 113–116. DOI: 10.1111/j.1751-553X.2008.01113.x
28. Iddles C., Taylor J., Cole R., Hill F.G.H. Evaluation of the Immature Granulocyte Counts in the Diagnosis of Sepsis Using the Sysmex XE-2100 Analyzer. Sysmex J. Intern., 2007, vol. 17, no, 1, pp. 20–29.
29. Petrova O.V., Shashin S.A., Tarasov D.G. Znachenie nezrelykh granulotsitov v diagnostike infektsionnovospalitel ʼnykh protsessov u kardiokhirurgicheskikh bolʼnykh [The Significance of Immature Granulocytes in Diagnostic of Infectious Inflammatory Processes in Cardiosurgery Patients]. Klinicheskaya laboratornaya diagnostika, 2014, no. 5, pp. 25–40.
30. Schaefer M., Rowan R.M. The Clinical Relevance of Nucleated Red Blood Cell Counts. Sysmex J. Int., 2000, vol. 10, no. 2, pp. 59–61.
31. Levina A.A., Meshcheryakova L.M., Tsybulʼskaya M.M., Sokolova T.V. Differentsialʼnaya diagnostika anemiy [Differential Diagnosis of Anaemias]. Klinicheskaya laboratornaya diagnostika, 2015, no. 12, pp. 26–30.
32. Skorodumova E.G., Kostenko V.A., Skorodumova E.A., Rysev A.V. Shirina raspredeleniya eritrotsitov – potentsialʼno novyy marker ostroy dekompensatsii serdechnoy nedostatochnosti [Red Cell Distribution Width – a Potential New Marker of Acute Decompensation of Chronic Heart Failure]. Kardiologiya: novosti, mneniya, obuchenie, 2017, no. 1, pp. 40–43.
33. Egorova E.N., Pustovalova R.A., Gorshkova M.A. RDW (Red Cell Distribution Width) – kak marker gipoksicheskogo sostoyaniya tkaney [RDW (Red Cell Distribution Width) – as a Marker of Tissue Hypoxia]. Klinicheskaya laboratornaya diagnostika, 2014, no. 9, p. 14.
34. Egorova E.N., Pustovalova R.A., Gorshkova M.A. Kliniko-diagnosticheskoe znachenie eritrotsitarnykh indeksov, opredelyaemykh avtomaticheskimi gematologicheskimi analizatorami [Clinical and Diagnostic Significance of Red Blood Cell Indices, Determined by Automatic Hematological Analyzers]. Verkhnevolzhskiy meditsinskiy zhurnal, 2014, vol. 12, no. 3, pp. 34–41.
35. Kostenko V.A., Sitnikova M.Yu., Skorodumova E.A., Skorodumova E.G., Fedorov A.N. Prognosticheskoe znachenie koeffitsienta anizotropii eritrotsitov u patsientov, gospitalizirovannykh po povodu ostroy dekompensirovannoy khronicheskoy serdechnoy nedostatochnosti [Predictive Value of Erythrocyte Anisotropy Coefficient in Patients Hospitalized for Acutely Decompensated Chronic Heart Failure]. Rossiyskiy kardiologicheskiy zhurnal, 2017, no. 12, pp. 26–30.
36. Urvantseva I.A., Nikolaev K.Yu., Salamatina L.V., Seitov A.A., Milovanova E.V., Nikolaeva A.A. Assotsiatsii variabelʼnosti obʼʼema eritrotsitov s kliniko-laboratornymi kharakteristikami ostrogo infarkta miokarda [Associations of Red Cell Distribution Width with Clinical and Laboratory Characteristics of Acute Myocardial Infarction]. Ateroskleroz, 2013, vol. 9, no. 3-4, pp. 31–37.
37. Melchio R., Rinaldi G., Testa E., Giraudo A., Serraino C., Bracco C., Spadafora L., Falcetta A., Leccardi S., Silvestri A., Fenoglio L. Red Cell Distribution Width Predicts Mid-Term Prognosis in Patients Hospitalized with Acute Heart Failure: The RDW in Acute Heart Failure (RE-AHF) Study. Intern. Emerg. Med., 2019, vol. 14, no. 2, pp. 239–247. DOI: 10.1007/s11739-018-1958-z
38. Smirnova M.P., Chizhov P.A., Baranov A.A. S-reaktivnyy belok, pokazateli obmena zheleza i eritrotsitarnye indeksy u patsientov s khronicheskoy serdechnoy nedostatochnostʼyu [C-Reactive Protein, Parameters of Iron Metabolism and Erythrocyte Indices in Patients with Chronic Heart Failure]. Sovremennye problemy nauki i obrazovaniya, 2018, no. 5, p. 72. Available at: http://www.science-education.ru/ru/article/view?id=28102 (accessed: 17 June 2020).
39. Testa E., Melchio R., Rinaldi G., Leccardi S., Silvestri A., Serraino C., Bracco C., Spadafora L., Giraudo A., Fenoglio L.M. Red Cell Distribution Width (RDW) Predicts Long Term Prognosis in Patients Hospitalized with Acute Heart Failure: The RDW in Acute Heart Failure (REAHF) Study. Eur. J. Heart Fail., 2016, vol. 18, suppl. 1, p. 10.
40. Turcato G., Cervellin G., Bonora A., Prati D., Zorzi E., Ricci G., Salvagno G.L., Maccagnani A., Lippi G. Red Blood Cell Distribution Width Improves Reclassification of Patients Admitted to the Emergency Department with Acute Decompensated Heart Failure. J. Med. Biochem., 2018, vol. 37, no. 3, pp. 299–306. DOI: 10.1515/jomb-2017-0054
41. Felker G.M., Allen L.A., Pocock S.J., Shaw L.K., McMurray J., Pfeffer M.A., Swedberg K., Wang D., Yusuf S., Michelson E.L., Granger C.B. Red Cell Distribution Width as a Novel Prognostic Marker in Heart Failure: Data from the CHARM Program and the Duke Databank. J. Am. Coll. Cardiol., 2007, vol. 50, no. 1, pp. 40–47. DOI: 10.1016/j.jacc.2007.02.067
42. Cauthen C.A., Tong W., Jain A., Tang W.H. Progressive Rise in Red Cell Distribution Width Is Associated with Disease Progression in Ambulatory Patients with Chronic Heart Failure. J. Card. Fail., 2012, vol. 18, no. 2, pp. 146–152. DOI: 10.1016/j.cardfail.2011.10.013
43. Mininkova A.I. Analiticheskie vozmozhnosti gematologicheskikh analizatorov v otsenke trombotsitov (obzor literatury) [The Analytical Possibilities of Hematologic Analyzers in Evaluation of Thrombocytes: A Literature Review]. Klinicheskaya laboratornaya diagnostika, 2012, no. 3, pp. 27–34.
44. Pogorelov V.M., Ivanova L.A., Kozinets G.I. Effektivnostʼ i informativnostʼ gematologicheskikh analizatorov [Efficiency and Informative Value of Hematological Analyzers]. Gematologiya i transfuziologiya, 2012, vol. 57, no. 3, pp. 30–37.
45. Kravchenko I.N., Rzhevskiy D.I., Pakhomova I.A., Kravchenko N.N., Murashev A.N. Ispolʼzovanie rezulʼtatov avtomatizirovannogo analiza krovi v toksikologicheskikh issledovaniyakh na gryzunakh [The Use of the Results of Automated Blood Cell Counting in Toxicological Studies on Rodents]. Vestnik novykh meditsinskikh tekhnologiy, 2012, vol. 19, no. 3, pp. 88–90.
46. Kosmovskiy S.Yu., Vasin S.L., Rozanova I.B., Sevastʼyanov V.I. Matematicheskaya obrabotka raspredeleniya trombotsitov cheloveka po razmeram dlya vyyavleniya geterogennosti kletok [Mathematical Processing of the Distribution of Human Platelets by Size to Identify Cell Heterogeneity]. Meditsinskaya tekhnika, 1999, no. 6, pp. 41–43.
47. Matyushichev V.B., Shamratova V.G. Izmeneniya pokazateley trombotsitov perifericheskoy krovi pri zhelezodefitsitnoy anemii [Changes in Peripheral Blood Platelets in Iron Deficiency Anemia]. Gematologiya i transfuziologiya, 2005, vol. 50, no. 2, pp. 29–32.
48. Matyushichev V.B., Shamratova V.G., Muzafarova D.A. Izmeneniya parametrov obʼʼema leykotsitov krovi pri zabolevaniyakh organov dykhaniya [Changes in Leukocyte Volume Parameters in Respiratory Diseases]. Pulʼmonologiya, 2000, no. 3, pp. 38–40.
49. Khaliulin A.V., Gusyakova O.A., Kozlov A.V., Gabrilʼchak A.I. Protsessy metabolizma i mekhanizmy regulyatsii aktivnosti trombotsitov (obzor literatury) [Metabolism Processes and Mechanisms of Regulation of Platelet Activity (Review of Literature)]. Klinicheskaya laboratornaya diagnostika, 2019, no. 3, pp. 164–169. DOI: 10.18821/0869-2084-2019-64-3-164-169
50. Sansanayudh N., Numthavaj P., Muntham D., Yamwong S., McEvoy M., Attia J., Sritara P., Thakkinstian A. Prognostic Effect of Mean Platelet Volume in Patients with Coronary Artery Disease: A Systematic Review and Meta-Analysis. Thromb. Haemost., 2015, vol. 114, no. 6, pp. 1299–1309. DOI: 10.1160/TH15-04-0280
51. Wada H., Tsuboi S., Ogita M., Suwa S., Dohi T., Miyauchi K., Shitara J., Endo H., Doi S., Iwata H., Kasai T., Okazaki S., Isoda K., Daida H. Mean Platelet Volume and Long-Term Cardiovascular Outcomes in Patients with Stable Coronary Artery Disease. Atherosclerosis, 2018, vol. 277, pp. 108–112. Available at: https://www.sciencedirect.com/science/article/pii/S0021915018313571?via%3Dihub/ (accessed: 17 June 2020).
52. Wan Z.F., Zhou D., Xue J.H., Wu Y., Wang H., Zhao Y., Zhu L., Yuan Z.Y. Combination of Mean Platelet Volume and the Grace Risk Score Better Predicts Future Cardiovascular Events in Patients with Acute Coronary Syndrome. Platelets, 2014, vol. 25, no. 6, pp. 447–451. DOI: 10.3109/09537104.2013.830708
53. Malerba M., Olivini A., Radaeli A., Ricciardolo F.L.M., Clini E. Platelet Activation and Cardiovascular Comorbidities in Patients with Chronic Obstructive Pulmonary Disease. Curr. Med. Res. Opin., 2016, vol. 32, no. 5, pp. 885–891. DOI: 10.1185/03007995.2016.1149054
54. Panova-Noeva M., Schulz A., Hermanns M.I., Grossmann V., Pefani E., Spronk H.M.H., Laubert-Reh D., Binder H., Beutel M., Pfeiffer N., Blankenberg S., Zeller T., Münzel T., Lackner K.J., Cate H.T., Wild P.S. Sex-Specific Differences in Genetic and Nongenetic Determinants of Mean Platelet Volume: Results from the Gutenberg Health Study. Blood, 2016, vol. 127, no. 2, pp. 251–259. DOI: 10.1182/blood-2015-07-660308
55. Giacomini A., Legovini P., Gessoni G., Antico F., Valverde S., Salvadego M.M., Manoni F. Platelet Count and Parameters Determined by the Bayer ADVIATM 120 in Reference Subjects and Patients. Clin. Lab. Haematol., 2001, vol. 23, no. 3, pp. 181–186. DOI: 10.1046/j.1365-2257.2001.00391.x
56. Ittermann T., Feig M.A., Petersmann A., Radke D., Greinacher A., Völzke H., Thiele T. Mean Platelet Volume Is More Important Than Age for Defining Reference Intervals of Platelet Counts. PLoS One, 2019, vol. 14, no. 3. Art. no. e0213658. DOI: 10.1371/journal.pone.0213658
57. Shamratova V.G., Tupinevich G.S. Gendernye osobennosti sootnosheniya obʼʼema i kolichestva kletok krovi [Gender-Specific Features of the Ratio of Blood Cell Volume to Their Count]. Morfologiya, 2019, vol. 155, no. 2, p. 322.
58. Osikov M.V., Telesheva L.F., Ageev Y.I. Effect of Erythropoietin on Lymphocytes Apoptosis in Experimental Chronic Renal Failure. Bull. Exp. Biol. Med., 2015, vol. 159, no. 3, pp. 348–350.
59. Chumakova S.P., Urazova O.I., Zima A.P., Novitskiy V.V. Osobennosti fiziologii eritrotsitov. Gemoliz i eriptoz [Features of the Physiology of Erythrocytes. Hemolysis and Eryptosis]. Gematologiya i transfuziologiya, 2018, vol. 63, no. 4, pp. 343–351.
60. Schotten N., Pasker-de Jong P.C.M., Moretti D., Zimmermann M.B., Geurts-Moespot A.J., Swinkels D.W., van Kraaij M.G.J. The Donation Interval of 56 Days Requires Extension to 180 Days for Whole Blood Donors to Recover from Changes in Iron Metabolism. Blood, 2016, vol. 128, no. 17, pp. 2185–2188. DOI: 10.1182/blood-2016-04-709451
61. Matyushichev V.B., Shamratova V.G. Dinamika parametrov obʼʼema kletok krovi pri beremennosti [Time Course of Changes in the Volume of Blood Cells in Pregnancy]. Klinicheskaya laboratornaya diagnostika, 2008, no. 1, pp. 45–47.
62. Shafieva L.N., Shamratova V.G. Osobennosti struktury populyatsiy eritrotsitov i trombotsitov krovi po korpuskulyarnomu obʼʼemu i ikh vzaimootnosheniya pri ekzamenatsionnom stresse [Features of the Population Structure of Red Blood Cells and Platelets by Corpuscular Volume and Their Correlation Under Exam Stress]. Sovremennye problemy nauki i obrazovaniya, 2018, no. 4, p. 222. Available at: https://science-education.ru/ru/article/view?id=27898 (accessed: 16 June 2020).



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North