Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21 ABOUT JOURNAL
|
Section: Physiology Download (pdf, 0.5MB )UDC612.11:599.323.45-111.11-117DOI10.37482/2687-1491-Z056AuthorsLidiya Yu. Rubtsova* ORCID: 0000-0003-3262-7337Nikolay P. Mongalev* ORCID: 0000-0002-2817-5780 Nadezhda A. Vakhnina* ORCID: 0000-0002-0779-5171 Vera D. Shadrina* ORCID: 0000-0002-4553-6218 Оleg N. Chupakhin** ORCID: 0000-0002-1672-2476 Evgeniy R. Boyko* ORCID: 0000-0002-8027-898X *Institute of Physiology of Komi Science Centre of the Ural Branch of the Russian Academy of Sciences (Syktyvkar, Komi Republic, Russian Federation) **I.Ya. Postovsky Institute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences (Yekaterinburg, Russian Federation) Corresponding author: Lidiya Rubtsova, address: ul. Pervomayskaya 50, GSP-2, Syktyvkar, 167982, Respublika Komi, Russian Federation; e-mail: lidiyarubcova@mail.ru AbstractThis paper studied the dynamics of the blood leukocyte composition in Wistar male rats at rest and when swimming with a weight before and after being administered a succinate-containing drug (Suc, meso-2,3-dimercaptosuccinic acid). Two control groups of animals kept in standard vivarium conditions were selected: those that received Suc 12 hours before the examination (VivC+Suc) and those that did not receive it (VivC). Similarly, two groups of animals were formed that were swimming with a load (4 % of their body weight) to exhaustion: those that received the drug 12 hours before the test (Swim4%+Suc) and those that did not receive it (Swim4%). Unidirectional shifts characterizing the morphofunctional state of white blood cells under experimental conditions were detected. In VivC+Suc animals, compared to VivC, we found an increase in the number of leukocytes due to the growing number of eosinophils and monocytes, large lymphocytes and microlymphocytes with a relative decrease in the number of small lymphocytes and an unchanged level of granulocytes with a tendency towards a decrease in the number of stab neutrophils. In the Swim4%+Suc group, compared to the Swim4%, changes in the number of white blood cells and their subpopulation composition manifested themselves in a similar way to the redistribution of immunocytes identified in the control groups. The increase in the neutrophilto- lymphocyte ratio in the Swim4%+Suc group as an indicator of stress tolerance corresponded to the increase in the swimming time of rats by the factor of 2.8. The differences in the blood cell composition between the VivC+Suc and VivC groups are viewed as the influence of Suc on the body’s preparation to the fulfilment of the protective function under physical load, since the distribution pattern of the blood leukocyte composition in rats from the VivC+Suc group is very similar to that of the Swim4%+Suc group. The practical significance of this study is associated with the search for new biologically active substances that optimally influence the immune system of animals under increased load. New data on the mechanism of blood redistribution in animals under the action of Suc before the swimming test can be used to study the manifestation patterns of acute adaptation effect.For citation: Rubtsova L.Yu., Mongalev N.P., Vakhnina N.A., Shadrina V.D., Chupakhin O.N., Boyko E.R. Effect of a Succinate-Containing Drug on the Blood Leukocyte Composition in Rats at Rest and During a Weight-Loaded Forced Swimming Test. Journal of Medical and Biological Research, 2021, vol. 9, no. 2, pp. 182–191. DOI: 10.37482/2687- 1491-Z056 Keywordsrats, white blood cells, physical load, succinate-containing drug, redistribution of the blood cell compositionReferences1. Ponomareva T.I., Dobryakov Yu.I. Zashchitnyy effekt ekstraktov iz astsidiy pri stressornom vozdeystvii [Protective Effect of Ascidian Extracts at Stress]. Aktual’nye problemy gumanitarnykh i estestvennykh nauk, 2013, no. 1, pp. 330–334.2. Titov V.N., Lisitsyn D.M., Razumovskiy S.D. Metodicheskie voprosy i diagnosticheskoe znachenie opredeleniya perekisnogo okisleniya lipidov v lipoproteinakh nizkoy plotnosti. Oleinovaya zhirnaya kislota kak biologicheskiy antioksidant (obzor literatury) [Methodological Issues and Diagnostic Value of Determining Lipid Peroxidation in Low Density Lipoproteins. Oleic Fatty Acid as a Biological Antioxidant (Literature Review)]. Klinicheskaya laboratornaya diagnostika, 2005, no. 4, pp. 3–10. 3. Sakhno L.V., Shevela E.Ya., Chernykh E.R. Fenotipicheskie i funktsional’nye osobennosti al’ternativno aktivirovannykh makrofagov: vozmozhnoe ispol’zovanie v regenerativnoy meditsine [Phenotypic and Functional Characteristics of the Alternative Activated Macrophages: Potential Use in Regenerative Medicine]. Immunologiya, 2015, vol. 36, no. 4, pp. 242–246. 4. Dhabhar F.S., Malarkey W.B., Neri E., McEwen B.S. Stress-Induced Redistribution of Immune Cells – from Barracks to Boulevards to Battlefields: A Tale of Three Hormones – Curt Richter Award Winner. Psychoneuroendocrinology, 2012, vol. 37, no. 9, pp. 1345–1368. DOI: 10.1016/j.psyneuen.2012.05.008 5. Dobrodeeva L.K., Samodova A.V., Karyakina O.E. Vzaimosvyazi v sisteme immuniteta [Correlations in the Immune System]. Yekaterinburg, 2014. 198 p. 6. Dammanahalli K.J., Sun Z. Endothelins and NADPH Oxidases in the Cardiovascular System. Clin. Exp. Pharmacol. Physiol., 2008, vol. 35, no. 1, pp. 2–6. DOI: 10.1111/j.1440-1681.2007.04830.x 7. Gulyy M.F. Osnovnye metabolicheskie tsikly [Key Metabolic Cycles]. Kiev, 1968. 417 p. 8. Shabiev L.F., Garipov T.V., Gasanov A.S. Vliyanie preparatov “Yantarnaya kislota”, “Yantaros” i “Yantaros plyus” na morfologicheskiy sostav krovi norok [Effect of “Yantarnaya Kislota” (Succinic Acid), “Yantaros”, and “Yantaros Plus” on the Morphological Composition of Mink Blood]. Uchenye zapiski Kazanskoy gosudarstvenoy akademii veterinarnoy meditsiny im. N.E. Baumana, 2012, vol. 209, pp. 349–352. 9. Yakovleva E.G., Anis’ko R.V., Gorshkov G.I. Yantarnaya kislota – prirodnyy adaptogen i immunostimulyator [Succinic Acid as a Natural Adaptogen and Immunostimulant]. Vestnik Kurskoy gosudarstvennoy sel’skokhozyaystvennoy akademii, 2015, no. 7, pp. 164–167. 10. Kovalenko A.L., Belyakova N.V. Yantarnaya kislota: farmakologicheskaya aktivnost’ i lekarstvennye formy [Succinic Acid: Pharmacological Activity and Pharmaceutical Forms]. Farmatsiya, 2000, no. 5, pp. 40–43. 11. Papunidi K.Kh., Kadikov I.R., Sitdikov F.F., Gayzatullin R.R., Simonova N.N. Effektivnost’ primeneniya biologicheski aktivnykh kormovykh dobavok v ratsione molodnyaka norok [Efficacy of Biological Active Feed Additive in the Ration of Young Minks]. Veterinariya Kubani, 2014, no. 3, pp. 22–24. 12. Oswald S., Grube M., Siegmund W., Kroemer H.K. Transporter-Mediated Uptake into Cellular Compartments. Xenobiotica, 2007, vol. 37, no. 10-11, pp. 1171–1195. DOI: 10.1080/00498250701570251 13. Mills E., O’Neill L.A.J. Succinate: A Metabolic Signal in Inflammation. Trends Cell Biol., 2014, vol. 24, no. 5, pp. 313–320. DOI: 10.1016/j.tcb.2013.11.008 14. O’Neill L.A.J., Pearce E.J. Immunometabolism Governs Dendritic Cell and Macrophage Function. J. Exp. Med., 2016, vol. 213, no. 1, pp. 15–23. DOI: 10.1084/jem.20151570 15. Okovityy S.V., Rad’ko S.V. Primenenie suktsinatov v sporte [The Application of Succinates in Sports]. Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoy kul’tury, 2015, vol. 92, no. 6, pp. 59–65. 16. Kondrashova M.N., Maevskiy E.I. Vzaimodeystvie gormonal’noy i mitokhondrial’noy regulyatsii [Interaction of Hormonal and Mitochondrial Regulation]. Kondrashova M.N. (ed.). Regulyatsiya energeticheskogo obmena i fiziologicheskoe sostoyanie organizma [Regulation of Energy Metabolism and Physiological State of the Body]. Moscow, 1978, pp. 217–229. 17. Testov B.V. Preimushchestva i nedostatki bol’shogo zapasa energii v organizme zhivotnykh [Advantages and Disadvantages of Large Energy Reserves in Animal Bodies]. Fundamental’nye issledovaniya, 2007, no. 8, pp. 91–95. 18. Goutianos G., Tzioura A., Kyparos A., Paschalis V., Margaritelis N.V., Veskoukis A.S., Zafeiridis A., Dipla K., Nikolaidis M.G., Vrabas I.S. The Rat Adequately Reflects Human Responses to Exercise in Blood Biochemical Profile: A Comparative Study. Physiol. Rep., 2015, vol. 3, no. 2. Art. no. e12293. DOI: 10.14814/phy2.12293 19. Gonzalez N.C., Kuwahira I. Systemic Oxygen Transport with Rest, Exercise, and Hypoxia: A Comparison of Humans, Rats, and Mice. Compr. Physiol., 2018, vol. 8, no. 4, pp. 1537–1573. DOI: 10.1002/cphy.c170051 20. Nikitin V.N. Gematologicheskiy atlas sel’skokhozyaystvennykh i laboratornykh zhivotnykh [Haematological Atlas of Agricultural and Laboratory Animals]. Moscow, 1956. 260 p. 21. Natale V.M., Brenner I.K., Moldoveanu A.I., Vasiliou P., Shek P., Shephard R.J. Effects of Three Different Types of Exercise on Blood Leukocyte Count During and Following Exercise. Sao Paulo Med. J., 2003, vol. 121, no. 1, pp. 9–14. DOI: 10.1590/s1516-31802003000100003 22. Brito A.F., Silva A.S., Souza I.L.L., Pereira J.C., Martins I.R.R., Silva B.A. Intensity of Swimming Exercise Influences Tracheal Reactivity in Rats. J. Smooth Muscle Res., 2015, vol. 51, pp. 70–81. DOI: 10.1540/jsmr.51.70 23. Todorov Y. Klinicheskie laboratornye issledovaniya v pediatrii [Clinical Laboratory Research in Paediatrics]. Sofia, 1968. 1065 p. 24. Makarov V.G., Makarova M.N. (eds.). Fiziologicheskie, biokhimicheskie i biometricheskie pokazateli normy eksperimental’nykh zhivotnykh [Physiological, Biochemical and Biometric Indicators of the Norm in Experimental Animals]. St. Petersburg, 2013. 116 p. 25. Kel’tsev V.A., Grebenkina L.I., Yakhina Yu.A., Antonova Yu.Yu. Morfofunktsional’noe sostoyanie immunnoy sistemy pri revmaticheskikh zabolevaniyakh u detey iz krupnogo promyshlennogo tsentra [Morphofunctional State of the Immune System in Rheumatic Diseases in Children from a Large Industrial Centre]. Izvestiya Samarskogo nauchnogo tsentra RAN, 2009, vol. 11, no. 1-5, pp. 872–876. 26. Rubtsova L.Yu., Mongalev N.P., Shadrina V.D., Chernykh A.A., Vakhnina N.A., Makarova I.A., Romanova A.M., Alisultanova N.Zh., Vasilenko T.F., Boyko E.R. Cellular Composition of White Blood Cells in Rats Under Physical Loads of Different Intensity. J. Med. Biol. Res., 2019, vol. 7, no. 1, pp. 23–31. DOI: 10.17238/issn2542-1298.2019.7.1.23 27. Kolobovnikova Yu.V., Urazova O.I., Novitskiy V.V., Litvinova L.S., Chumakova S.P. Eozinofil: sovremennyy vzglyad na kinetiku, strukturu i funktsiyu [Eosinophil: A Modern Outlook on Kinetics, Structure, and Function]. Gematologiya i transfuziologiya, 2012, vol. 57, no. 1, pp. 30–36. 28. Uotila L.M., Jahan F., Soto Hinoiosa L., Melandri E., Grönholm M., Gahmberg C.G. Specific Phosphorylations Transmit Signals from Leukocyte β2 to β1 Integrins and Regulate Adhesion. J. Biol. Chem., 2014, vol. 289, no. 46, pp. 32230–32242. DOI: 10.1074/jbc.M114.588111 29. Aten R.F., Kolodecik T.R., Rossi M.J., Debusscher C., Behrman H.R. Prostaglandin F2α Treatment in vivo, but not in vitro, Stimulates Protein Kinase C-Activated Superoxide Production by Nonsteroidogenic Cells of the Rat Corpus Luteum. Biol. Reprod., 1998, vol. 59, no. 5, pp. 1069–1076. DOI: 10.1095/biolreprod59.5.1069 |
Make a Submission
INDEXED IN:
|