Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21 ABOUT JOURNAL
|
Section: Review articles Download (pdf, 0.7MB )UDC616.1+612.08DOI10.37482/2687-1491-Z059AuthorsEvgeniya D. Namiot* ORCID: 0000-0003-3725-6360Varvara S. Kuznetsova* ORCID: 0000-0003-0404-1531 Ekaterina V. Kustavinova* ORCID: 0000-0001-5546-1726 Nataliya L. Kartashkina* ORCID: 0000-0003-4648-9027 *I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Moscow, Russian Federation) Corresponding author: Evgeniya Namiot, address: ul. Bol’shaya Pirogovskay 19, str. 1, Moscow, 119146, Russian Federation; e-mail: enamiot@gmail.com AbstractMethods of genetic editing and the ability to control it have made it possible to achieve significant progress in medicine, in particular, in the study of the pathogenesis of various diseases, including those of cardiovascular aetiology. One of the editing methods is the CRISPR/Cas9 technology. CRISPR is a family of DNA sequences found in the genomes of bacteria and other prokaryotes, while Cas9 is an endonuclease that cleaves the target foreign sequence. It should be noted that cardiovascular disease is one of the leading causes of death worldwide. A fairly large number of cardiovascular diseases, such as hypertrophic cardiomyopathy and long and short QT syndromes, are hereditary. This fact significantly complicates the process of treating these pathologies. However, it also allows us to use CRISPR/Cas9 to detect and edit genes in order to alleviate the clinical picture. At the same time, genetic engineering and its methods in general are a rather poorly studied area. Moreover, in spite of a significant number of experimental works on the effects of CRISPR on the cardiovascular system, there is a profound lack of comprehensive reviews that would combine all the positive and negative aspects of the use of CRISPR/ Cas9 in the treatment of hereditary cardiovascular diseases. This article discusses various options of using CRISPR editing directly in clinical practice, as well as in modelling cardiovascular diseases. Based on the data obtained, we were able to identify the areas in which application of CRISPR/Cas9 is the most appropriate and shows the best result.For citation: Namiot E.D., Kuznetsova V.S., Kustavinova E.V., Kartashkina N.L. Prospects of Using the CRISPR/ Cas9 System for Treating and Modelling Cardiovascular Diseases (Review). Journal of Medical and Biological Research, 2021, vol. 9, no. 2, pp. 213–225. DOI: 10.37482/2687-1491-Z059 KeywordsCRISPR/Cas9, cardiovascular diseases, genetics, genome editingReferences1. Kim J.G., Garrett S., Wei Y., Graveley B.R., Terns M.P. CRISPR DNA Elements Controlling Site-Specific Spacer Integration and Proper Repeat Length by a Type II CRISPR–Cas System. Nucl. Acids Res., 2019, vol. 47, no. 16, pp. 8632–8648. DOI: 10.1093/nar/gkz6772. Marraffini L.A., Sontheimer E.J. CRISPR Interference Limits Horizontal Gene Transfer in Staphylococci by Targeting DNA. Science, 2008, vol. 322, no. 5909, pp. 1843–1845. DOI: 10.1126/science.1165771 3. Pougach K., Semenova E., Bogdanova E., Datsenko K.A., Djordjevic M., Wanner B.L., Severinov K. Transcription, Processing and Function of CRISPR Cassettes in Escherichia coli. Mol. Microbiol., 2010, vol. 77, no. 6, pp. 1367–1379. DOI: 10.1111/j.1365-2958.2010.07265.x 4. Sander J.D., Joung J.K. CRISPR-Cas Systems for Editing, Regulating and Targeting Genomes. Nat. Biotechnol., 2014, vol. 32, no. 4, pp. 347–355. DOI: 10.1038/nbt.2842 5. Nabel E.G. Cardiovascular Disease. N. Engl. J. Med., 2003, vol. 349, no. 1, pp. 60–72. DOI: 10.1056/NEJMra035098 6. Silas S., Makarova K.S., Shmakov S., Páez-Espino D., Mohr G., Liu Y., Davison M., Roux S., Krishnamurthy S.R., Fu B.X.H., Hansen L.L., Wang D., Sullivan M.B., Millard A., Clokie M.R., Bhaya D., Lambowitz A.M., Kyrpides N.C., Koonin E.V., Fire A.Z. On the Origin of Reverse Transcriptase-Using CRISPR-Cas Systems and Their Hyperdiverse, Enigmatic Spacer Repertoires. mBio, 2017, vol. 8, no. 4. Art. no. e00897-17. DOI: 10.1128/mBio.00897-17 7. Xie C., Zhang Y.P., Song L., Luo J., Qi W., Hu J., Lu D., Yang Z., Zhang J., Xiao J., Zhou B., Du J.L., Jing N., Liu Y., Wang Y., Li B.L., Song B.L., Yan Y. Genome Editing with CRISPR/Cas9 in Postnatal Mice Corrects PRKAG2 Cardiac Syndrome. Cell Res., 2016, vol. 26, pp. 1099–1111. DOI: 10.1038/cr.2016.101 8. Ben Jehuda R., Shemer Y., Binah O. Genome Editing in Induced Pluripotent Stem Cells Using CRISPR/Cas9. Stem Cell Rev. Rep., 2018, vol. 14, no. 3, pp. 323–336. DOI: 10.1007/s12015-018-9811-3 9. Ledford H. CRISPR Fixes Disease Gene in Viable Human Embryos. Nature, 2017, vol. 548, no. 7665, pp. 13–14. DOI: 10.1038/nature.2017.22382 10. Ben Jehuda R., Eisen B., Shemer Y., Mekies L.N., Szantai A., Reiter I., Cui H., Guan K., Haron-Khun S., Freimark D., Sperling S.R., Gherghiceanu M., Arad M., Binah O. CRISPR Correction of the PRKAG2 Gene Mutation in the Patient’s Induced Pluripotent Stem Cell-Derived Cardiomyocytes Eliminates Electrophysiological and Structural Abnormalities. Heart Rhythm, 2018, vol. 15, no. 2, pp. 267–276. DOI: 10.1016/j.hrthm.2017.09.024 11. Liang P., Sallam K., Wu H., Li Y., Itzhaki I., Garg P., Zhang Y., Vermglinchan V., Lan F., Gu M., Gong T., Zhuge Y., He C., Ebert A.D., Sanchez-Freire V., Churko J., Hu S., Sharma A., Lam C.K., Scheinman M.M., Bers D.M., Wu J.C. Patient-Specific and Genome-Edited Induced Pluripotent Stem Cell-Derived Cardiomyocytes Elucidate Single- Cell Phenotype of Brugada Syndrome. J. Am. Coll. Cardiol., 2016, vol. 68, no. 19, pp. 2086–2096. DOI: 10.1016/j.jacc.2016.07.779 12. Watkins H., Ashrafian H., Redwood C. Inherited Cardiomyopathies. N. Engl. J. Med., 2011, vol. 364, no. 17, pp. 1643–1656. DOI: 10.1056/NEJMra0902923 13. van der Velden J., Tocchetti C.G., Varricchi G., Bianco A., Sequeira V., Hilfiker-Kleiner D., Hamdani N., Leite-Moreira A.F., Mayr M., Falcão-Pires I., Thum T., Dawson D.K., Balligand J.L., Heymans S. Metabolic Changes in Hypertrophic Cardiomyopathies: Scientific Update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc. Res., 2018, vol. 114, no. 10, pp. 1273–1280. DOI: 10.1093/cvr/cvy147 14. Green E.M., Wakimoto H., Anderson R.L., Evanchik M.J., Gorham J.M., Harrison B.C., Henze M., Kawas R., Oslob J.D., Rodriguez H.M., Song Y., Wan W., Leinwand L.A., Spudich J.A., McDowell R.S., Seidman J.G., Seidman C.E. A Small-Molecule Inhibitor of Sarcomere Contractility Suppresses Hypertrophic Cardiomyopathy in Mice. Science, 2016, vol. 351, no. 6273, pp. 617–621. DOI: 10.1126/science.aad3456 15. Cirino A.L., Seidman C.E., Ho C.Y. Genetic Testing and Counseling for Hypertrophic Cardiomyopathy. Cardiol. Clin., 2019, vol. 37, no. 1, pp. 35–43. DOI: 10.1016/j.ccl.2018.08.003 16. Murphy S.L., Anderson J.H., Kapplinger J.D., Kruisselbrink T.M., Gersh B.J., Ommen S.R., Ackerman M.J., Bos J.M. Evaluation of the Mayo Clinic Phenotype-Based Genotype Predictor Score in Patients with Clinically Diagnosed Hypertrophic Cardiomyopathy. J. Cardiovasc. Transl. Res., 2016, vol. 9, no. 2, pp. 153–161. DOI: 10.1007/s12265-016-9681-5 17. Marian A.J., Braunwald E. Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ. Res., 2017, vol. 121, no. 7, pp. 749–770. DOI: 10.1161/CIRCRESAHA.117.311059 18. Singer E.S., Ingles J., Semsarian C., Bagnall R.D. Key Value of RNA Analysis of MYBPC3 Splice-Site Variants in Hypertrophic Cardiomyopathy. Circ. Genom. Precis. Med., 2019, vol. 12, no. 1. Art. no. e002368. DOI: 10.1161/CIRCGEN.118.002368 19. Kaul S., Heitner S.B., Mitalipov S. Sarcomere Gene Mutation Correction. Eur. Heart J., 2018, vol. 39, no. 17, pp. 1506–1507. DOI: 10.1093/eurheartj/ehy179 20. Grassmann F., Kiel C., den Hollander A.I., Weeks D.E., Lotery A., Cipriani V., Weber B.H.F; International Age-Related Macular Degeneration Genomics Consortium (IAMDGC). Y Chromosome Mosaicism Is Associated with Age-Related Macular Degeneration. Eur. J. Hum. Genet., 2019, vol. 27, no. 1, pp. 36–41. DOI: 10.1038/s41431-018-0238-8 21. Mehravar M., Shirazi A., Nazari M., Banan M. Mosaicism in CRISPR/Cas9-Mediated Genome Editing. Dev. Biol., 2019, vol. 445, no. 2, pp. 156–162. DOI: 10.1016/j.ydbio.2018.10.008 22. Tanihara F., Hirata M., Nguyen N.T., Le Q.A., Hirano T., Otoi T. Effects of Concentration of CRISPR/Cas9 Components on Genetic Mosaicism in Cytoplasmic Microinjected Porcine Embryos. J. Reprod. Dev., 2019, vol. 65, no. 3, pp. 209–214. DOI: 10.1262/jrd.2018-116 23. Lander E.S., Baylis F., Zhang F., Charpentier E., Berg P., Bourgain C., Friedrich B., Joung J.K., Li J., Liu D., Naldini L., Nie J.B., Qiu R., Schoene-Seifert B., Shao F., Terry S., Wei W., Winnacker E.L. Adopt a Moratorium on Heritable Genome Editing. Nature, 2019, vol. 567, no. 7747, pp. 165–168. DOI: 10.1038/d41586-019-00726-5 24. Strecker J., Jones S., Koopal B., Schmid-Burgk J., Zetsche B., Gao L., Makarova K.S., Koonin E.V., Zhang F. Engineering of CRISPR-Cas12b for Human Genome Editing. Nat. Commun., 2019, vol. 10. Art. no. 212. DOI: 10.1038/s41467-018-08224-4 25. Papasavva P., Kleanthous M., Lederer C.W. Rare Opportunities: CRISPR/Cas-Based Therapy Development for Rare Genetic Diseases. Mol. Diagn. Ther., 2019, vol. 23, no. 2, pp. 201–222. DOI: 10.1007/s40291-019-00392-3 26. Berns K.I., Srivastava A. Next Generation of Adeno-Associated Virus Vectors for Gene Therapy for Human Liver Diseases. Gastroenterol. Clin. North Am., 2019, vol. 48, no. 2, pp. 319–330. DOI: 10.1016/j.gtc.2019.02.005 27. Prondzynski M., Mearini G., Carrier L. Gene Therapy Strategies in the Treatment of Hypertrophic Cardiomyopathy. Pflugers Arch., 2019, vol. 471, no. 5, pp. 807–815. DOI: 10.1007/s00424-018-2173-5 28. Domenger C., Grimm D. Next-Generation AAV Vectors – Do Not Judge a Virus (Only) by Its Cover. Hum. Mol. Genet., 2019, vol. 28, no. R1, pp. R3–R14. DOI: 10.1093/hmg/ddz148 29. Recchia A. AAV-CRISPR Persistence in the Eye of the Beholder. Mol. Ther., 2019, vol. 27, no. 1, pp. 12–14. DOI: 10.1016/j.ymthe.2018.12.007 30. Giulitti S., Pellegrini M., Zorzan I., Martini P., Gagliano O., Mutarelli M., Ziller M.J., Cacchiarelli D., Romualdi C., Elvassore N., Martello G. Direct Generation of Human Naive Induced Pluripotent Stem Cells from Somatic Cells in Microfluidics. Nat. Cell Biol., 2019, vol. 21, no. 2, pp. 275–286. DOI: 10.1038/s41556-018-0254-5 31. Bruntraeger M., Byrne M., Long K., Bassett A.R. Editing the Genome of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes. Methods Mol. Biol., 2019, vol. 1961, pp. 153–183. DOI: 10.1007/978-1-4939-9170-9_11 32. Loskill P., Huebsch N. Engineering Tissues from Induced Pluripotent Stem Cells. Tissue Eng. Part A, 2019, vol. 25, no. 9-10, pp. 707–710. DOI: 10.1089/ten.TEA.2019.0118 33. Woltjen K. Precision Genome Editing in Human-Induced Pluripotent Stem Cells. Inoue H., Nakamura Y. (eds.). Medical Applications of iPS Cells. Singapore, 2019, pp. 113–130. DOI: 10.1007/978-981-13-3672-0_7 34. Shinnawi R., Shaheen N., Huber I., Shiti A., Arbel G., Gepstein A., Ballan N., Setter N., Tijsen A.J., Borggrefe M., Gepstein L. Modeling Reentry in the Short QT Syndrome with Human-Induced Pluripotent Stem Cell-Derived Cardiac Cell Sheets. J. Am. Coll. Cardiol., 2019, vol. 73, no. 18, pp. 2310–2324. DOI: 10.1016/j.jacc.2019.02.055 35. Di Toro A., Giuliani L., Favalli V., Di Giovannantonio M., Smirnova A., Grasso M., Arbustini E. Genetics and Clinics: Current Applications, Limitations, and Future Developments. Eur. Heart J. Suppl., 2019, vol. 21, suppl. B, pp. B7–B14. DOI: 10.1093/eurheartj/suz048 36. Motta B.M., Pramstaller P.P., Hicks A.A., Rossini A. The Impact of CRISPR/Cas9 Technology on Cardiac Research: From Disease Modelling to Therapeutic Approaches. Stem Cells Int., 2017, vol. 2017. Art. no. 8960236. DOI: 10.1155/2017/8960236 37. Funakoshi S., Miki K., Takaki T., Okubo C., Hatani T., Chonabayashi K., Nishikawa M., Takei I., Oishi A., Narita M., Hoshijima M., Kimura T., Yamanaka S., Yoshida Y. Enhanced Engraftment, Proliferation, and Therapeutic Potential in Heart Using Optimized Human iPSC-Derived Cardiomyocytes. Sci. Rep., 2016, vol. 6. Art. no. 19111. DOI: 10.1038/srep19111 38. Chetty S., Pagliuca F.W., Honore C., Kweudjeu A., Rezania A., Melton D.A. A Simple Tool to Improve Pluripotent Stem Cell Differentiation. Nat. Methods, 2013, vol. 10, no. 6, pp. 553–556. DOI: 10.1038/nmeth.2442 39. Malan D., Zhang M., Stallmeyer B., Müller J., Fleischmann B.K., Schulze-Bahr E., Sasse P., Greber B. Human iPS Cell Model of Type 3 Long QT Syndrome Recapitulates Drug-Based Phenotype Correction. Basic Res. Cardiol., 2016, vol. 111, no. 2. Art. no. 14. DOI: 10.1007/s00395-016-0530-0 40. Zhang G., Truong L., Tanguay R.L., Reif D.M. A New Statistical Approach to Characterize Chemical-Elicited Behavioral Effects in High-Throughput Studies Using Zebrafish. PLoS One, 2017, vol. 12, no. 1. Art. no. e0169408. DOI: 10.1371/journal.pone.0169408 41. Hodgson P., Ireland J., Grunow B. Fish, the Better Model in Human Heart Research? Zebrafish Heart Aggregates as a 3D Spontaneously Cardiomyogenic in vitro Model System. Prog. Biophys. Mol. Biol., 2018, vol. 138, pp. 132–141. DOI: 10.1016/j.pbiomolbio.2018.04.009 42. Cao J., Navis A., Cox B.D., Dickson A.L., Gemberling M., Karra R., Bagnat M., Poss K.D. Single Epicardial Cell Transcriptome Sequencing Identifies Caveolin 1 as an Essential Factor in Zebrafish Heart Regeneration. Development, 2016, vol. 143, no. 2, pp. 232–243. DOI: 10.1242/dev.130534 43. Morales E.E., Wingert R.A. Zebrafish as a Model of Kidney Disease. Miller R. (ed.). Kidney Development and Disease. Cham, 2017. Vol. 60, pp. 55–75. DOI: 10.1007/978-3-319-51436-9_3 44. Bournele D., Beis D. Zebrafish Models of Cardiovascular Disease. Heart Fail. Rev., 2016, vol. 21, no. 6, pp. 803–813. DOI: 10.1007/s10741-016-9579-y |
Make a Submission
INDEXED IN:
|