Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21 ABOUT JOURNAL
|
Section: Medical and biological sciences Download (pdf, 0.9MB )UDC617-089.844+57.089.2AuthorsMaksim V. Gurin* ORCID: https://orcid.org/0000-0002-8234-4522Aleksey A. Venediktov* ORCID: https://orcid.org/0000-0003-1606-479X Yuliya A. Glumskova* ORCID: https://orcid.org/0000-0002-4082-7892 Kristina G. Korneeva* ORCID: https://orcid.org/0000-0002-2081-5245 *OOO Cardioplant, ZAO MedInzh Research and Production Enterprise (Penza, Russian Federation) Corresponding author: Maksim Gurin, address: ul. Popova 20A-40, Penza, 440035, Russian Federation; e-mail: gmv7981@mail.ru AbstractDamage to the tendon-ligamentous apparatus places serious limitations on a personʼs physical activity. Injuries are especially common in physically healthy people leading an active lifestyle, such as athletes. To treat such injuries in orthopaedics and traumatology, autoplastic operations are performed or prostheses made of synthetic or biological materials are installed. The known treatment methods, in spite of their effectiveness, have a number of serious drawbacks, which often limit their use. Therefore, the search for new approaches and materials for plastic ligaments is an urgent task. Today, biotissue prostheses are accumulating advantages over their synthetic counterparts. The most promising raw material for biological ligament prostheses, due to its availability in the required quantity and optimal size, is the flexor and extensor calf tendons. This paper aimed to develop a method for treating xenogenic tendon to manufacture ligament prostheses and assessing its biocompatibility in a heterotopic implantation model. To manufacture a ligament prosthesis, the raw material was subjected to mechanical cleaning and chemical-physical treatment, as well as treatment with supercritical carbon dioxide fluid with the addition of the nonionic surfactant Tween 80, which together contributed to effective decellularization and removal of other biologically active components, while maintaining the physical and mechanical parameters and natural fiberarchitectonics of native raw materials. The biocompatible properties of ligament prosthesis specimens made from the flexor and extensor calf tendons using this method were evaluated in a model of heterotopic implantation into the subcutaneous adipose tissue of rats. The results obtained confirm the promising use of this material, treated according to the proposed method, in clinical practice.For citation: Gurin M.V., Venediktov A.A., Glumskova Yu.A., Korneeva K.G. Evaluation of the Biocompatibility of Cleaned Bovine Tendon in a Heterotopic Implantation Model. Journal of Medical and Biological Research, 2021, vol. 9, no. 3, pp. 327–334. DOI: 10.37482/2687-1491-Z070 Keywordsligament prosthesis, bovine tendon, biocompatibility, method for treating xenografts, decellularization, supercritical carbon dioxide fluid, heterotopic implantationReferences1. Makarov S.A., Sergienko S.A. Rastyazheniya svyazok, sukhozhiliy i myshts [Sprains of Ligaments, Tendons and Muscles]. RMZh, 2001, no. 23, p. 1046.2. Klimov A.V., Glukhov A.A. Povrezhdeniya peredney krestoobraznoy svyazki kolennogo sustava u sportsmenov. Faktory riska i osnovnye mekhanizmy polucheniya travmy [Anterior Cruciate Ligament Injuries in Athletes. Risk Factors and Main Mechanisms of Injury]. NovaInfo, 2018, vol. 1, no. 91, pp. 139–146. 3. Zayats V.V., Dulaev A.K., Dydykin A.V., Ulʼyanchenko I.N., Kolomoytsev A.V., Kovtun A.V. Analiz effektivnosti tekhnologiy artroskopicheskoy plastiki peredney krestoobraznoy svyazki kolennogo sustava [Analysis of Efficacy of Arthroscopic Plasty Technologies of Anterior Cruciform Ligament of Knee Joint Based on Anatomical Position of Autograft]. Vestnik khirurgii im. I.I. Grekova, 2017, vol. 176, no. 2, pp. 77–82. 4. Rybin A.V., Kuznetsov I.A., Rumakin V.P., Netylʼko G.I., Lomaya M.P. Eksperimentalʼno-morfologicheskie aspekty nesostoyatelʼnosti sukhozhilʼnykh auto- i allotransplantatov posle rekonstruktsii peredney krestoobraznoy svyazki kolennogo sustava v rannem posleoperatsionnom periode [Experimental and Morphological Aspects of Failed Tendon Auto- and Allografts After ACL Reconstruction in Early Postoperative Period]. Travmatologiya i ortopediya, 2016, vol. 22, no. 4, pp. 60–75. DOI: 10.21823/2311-2905-2016-22-4-60-75 5. Belov Yu.V., Lysenko A.V., Lednev P.V., Salagaev G.I. Primenenie zaplaty iz detsellyulyarizirovannogo ksenoperikarda v khirurgii brakhiotsefalʼnykh arteriy [Decellularized Xenopericardial Patch in Supra-Aortic Vessels Repair]. Kardiologiya i serdechno-sosudistaya khirurgiya, 2018, no. 2, pp. 31–34. DOI: 10.17116/kardio201811231-34 6. Sivakonʼ S.V., Devin I.V., Sretenskiy S.V., Chizh A.A., Kosmynin D.A. Rezulʼtaty primeneniya protezov iz ksenoperikarda v khirurgicheskom lechenii podkozhnykh degenerativnykh razryvov akhillova sukhozhiliya [Results of Application of Xenopericardial Prostheses in the Surgical Treatment of Subcutaneous Degenerative Achilles Tendon Ruptures]. Sovremennye problemy nauki i obrazovaniya, 2015, no. 6, p. 128. 7. Manchenko A.A., Mikhailova I.P., Sandomirskay B.P. Morphology of Tissue Reaction in Rats after Subcutaneous Implantation of Porcine Pericardium and Aortic Valve Leaflets Devitalized by Cryoradiation. Cell Organ Transplantol, 2016, vol. 4, no. 1, pp. 39–46. 8. Sergeevichev D.S., Sergeevicheva V.V., Subbotovskaya A.I., Vasilʼeva M.B., Dokuchaeva A.A., Karasʼkov A.M., Kozlov V.A. Detsellyulyarizatsiya kak sposob predotvrashcheniya aktivatsii immunnogo otveta na allogennye legochnye klapany serdtsa [Decellularization as a Prevention of Immune Response Activation to Allogeneic Pulmonary Valves]. Kletochnaya transplantologiya i tkanevaya inzheneriya, 2013, vol. 8, no. 4, pp. 55–60. 9. Pedroso D., Eli M. Xenogenic Soft Tissue Implants and Methods of Their Manufacture and Use. Patent RF no. 2665366, 2018 (in Russ.). 10. Bikbov M.M., Khalimov A.R., Zaynutdinova G.Kh., Kudoyarova K.I., Lukʼyanova E.E. Method for Obtaining Xenografts for Ophthalmic Surgery. Patent RF no. 2607185, 2017 (in Russ.). 11. Isidan A., Liu S., Li P., Lashmet M., Smith L.J., Hara H., Cooper D.K.C., Ekser B. Decellularization Methods for Developing Porcine Corneal Xenografts and Future Perspectives. Xenotransplantations, 2019, vol. 26, no. 6. Art. no. e12564. DOI: 10.1111/xen.12564 12. Britikov D.V., Chashchin I.S., Khugaev G.A., Bakuleva N.P. Devitalizatsiya allograftov sverkhkriticheskim dioksidom ugleroda i detergentami. Eksperimentalʼnaya otsenka [The Decellularization of Allografts with Supercritical Carbon Dioxide and Detergents. Experimental Data]. Serdechno-sosudistye zabolevaniya. Byuletenʼ NTsSSKh im. A.N. Bakuleva RAMN, 2019, vol. 20, no. 5, pp. 402–409. DOI: 10.24022/1810-0694-2019-20-5-402-409 13. Sawada K., Terada D., Yamaoka T., Kitamura S., Fujisato T. Cell Removal with Supercritical Carbon Dioxide for Acellular Artificial Tissue. J. Chem. Technol. Biotechnol., 2008, vol. 83, no. 6, pp. 943–949. DOI: 10.1002/jctb.1899 14. Ribeiro N., Soares G.C., Santos-Rosales V., Concheiro A., Alvarez-Lorenzo C., García-González C.A., Oliveira A.L. A New Era for Sterilization Based on Supercritical CO2 Technology. J. Biomed. Mater. Res. B Appl. Biomater., 2020, vol. 108, no. 2. DOI: 10.1002/jbm.b.34398 15. Zalepugin D.Yu., Tilʼkunova N.A., Chernyshova I.V., Vlasov M.I. Sterilizatsiya v sverkhkriticheskikh sredakh [Sterilization in Supercritical Media]. Sverkhkriticheskie flyuidy. Teoriya i praktika, 2015, vol. 10, no. 4, pp. 11–17. 16. Perrut M. Sterilization and Virus Inactivation by Supercritical Fluids (a Review). J. Supercrit. Fluids, 2012, vol. 66, pp. 359–371. DOI: 10.1016/j.supflu.2011.07.007 |
Make a Submission
INDEXED IN:
|