Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21 ABOUT JOURNAL
|
Section: Physiology Download (pdf, 0.6MB )UDC[612.1+612.8]:612.084DOI10.37482/2687-1491-Z077AuthorsTat’yana A. Fisher* ORCID: http://orcid.org/0000-0001-9614-9907Svetlana S. Kolyvanova* ORCID: http://orcid.org/0000-0002-0579-081X *Federal Research Centre “Tyumen Scientific Centre of Siberian Branch of the Russian Academy of Sciences” (Tyumen, Russian Federation) AbstractThe aim of this paper was to study changes in the haemodynamic and psychophysiological parameters of working age men as a result of repeated exposure to contrasting temperatures, depending on the type of autonomic regulation. Materials and methods. The research involved 14 men (aged 34.77 ± 5.66 years; office workers) divided into two groups according to Kérdö index: those with the sympathetic (n = 8) and parasympathetic (n = 6) types of self-regulation. Cold conditioning followed a certain plan of exposure to contrasting temperatures. The haemodynamic and psychophysiological parameters as well as adaptive potential were assessed 20 minutes before and 20 minutes after the exposure (alternating temperature cycles). We examined the following parameters: heart rate, systolic and diastolic blood pressure, pulse and mean arterial pressure, stroke volume, cardiac output, vascular resistance, and adaptive potential according to Baevsky. Integral psychophysiological parameters were determined using the Lüscher express method. Results. Subjects with predominance of sympathetic regulation both before and after the exposure to contrasting temperatures had higher values of heart rate and cardiac output and lower vascular resistance than the parasympathicotonic group. Individuals with predominance of parasympathetic regulation showed decreased cardiac output and a significant increase in vascular resistance after the exposure compared with the initial data. We found statistically significant differences in the integral parameters “heteronomy/autonomy” and “balance of personal traits” between the groups under study before the conditioning procedures. The research indicates that repeated exposure to contrasting temperatures not only affects the haemodynamic parameters, but also changes the psychophysiological parameters, motivated behaviour in particular.Corresponding author: Svetlana Kolyvanova, address: ul. Malygina 86, Tyumen, 625026, Russian Federation; e-mail: kolyvanova93@mail.ru For citation: Fisher T.A., Kolyvanova S.S. Effect of Repeated Exposure to Contrasting Temperatures on the Body of Working Age Men with Different Types of Autonomic Regulation. Journal of Medical and Biological Research, 2021, vol. 9, no. 4, pp. 394–404. DOI: 10.37482/2687-1491-Z077 Keywordsrepeated exposure to contrasting temperatures, alternating temperature cycles, temperature stress, autonomic cardiac regulation, haemodynamic parameters, adaptive potential, psychophysiological parameters, working age menReferences1. Berko J., Ingram D.D., Saha S., Parker J.D. Deaths Attributed to Heat, Cold, and Other Weather Events in the United States, 2006–2010. Natl. Health Stat. Rep., 2014, no. 76, pp. 1–15.2. Scotney H., Symonds M.E., Law J., Budge H., Sharkey D., Manolopoulos K.N. Glucocorticoids Modulate Human Brown Adipose Tissue Thermogenesis in vivo. Metabolism, 2017, vol. 70, pp. 125–132. DOI: 10.1016/j. metabol.2017.01.024 3. Daanen H.A.M., Van Marken Lichtenbelt W.D. Human Whole Body Cold Adaptation. Temperature (Austin), 2016, vol. 3, no. 1, pp. 104–118. DOI: 10.1080/23328940.2015.1135688 4. Huynen M.M., Martens P. Climate Change Effects on Heat- and Cold-Related Mortality in the Netherlands: A Scenario-Based Integrated Environmental Health Impact Assessment. Int. J. Environ. Res. Public Health, 2015, vol. 12, no. 10, pp. 13295–13320. 5. Teległów A., Dąbrowski Z., Marchewka A., Tyka A., Krawczyk M., Głodzik J., Szyguła Z., Mleczko E., Bilski J., Tyka A., Tabarowski Z., Czepiel J., Filar-Mierzwa K. The Influence of Winter Swimming on the Rheological Properties of Blood. Clin. Hemorheol. Microcirc., 2014, vol. 57, no. 2, pp. 119–127. DOI: 10.3233/CH-141823 6. Gerasimova L.I., Fedosova A.A. Characteristics of the Autonomic Regulation in Humans with Different Susceptibility to Cold. Hum. Physiol., 2016, vol. 42, no. 2, pp. 228–233. DOI: 10.1134/S0362119715060031 7. Johnson J.M., Minson C.T., Kellogg D.L. Jr. Cutaneous Vasodilator and Vasoconstrictor Mechanisms in Temperature Regulation. Compr. Physiol., 2014, vol. 4, no. 1, pp. 33–89. DOI: 10.1002/cphy.c130015 8. Checinska-Maciejewska Z., Niepolski L., Checinska A., Korek E., Kolodziejczak B., Kopczynski Z., Krauss H., Pruszynska-Oszmalek E., Kolodziejski P., Gibas-Dorna M. Regular Cold Water Swimming During Winter Time Affects Resting Hematological Parameters and Serum Erythropoietin. J. Physiol. Pharmacol., 2019, vol. 70, no. 5, pp. 747–756. DOI: 10.26402/jpp.2019.5.10 9. Knechtle B., Stjepanovic M., Knechtle C., Rosemann T., Sousa C.V., Nikolaidis P.T. Physiological Responses to Swimming Repetitive “Ice Miles”. J. Strength Cond. Res., 2021, vol. 35, no. 2, рр. 487–494. DOI: 10.1519/JSC.0000000000002690 10. Fisher T.A. Psikhologicheskie i immunnye reaktsii na kratkovremennoe kholodovoe vozdeystvie [Psychological and Immune Reactions to Short-Term Influence by the Cold]. Vestnik Ural’skoy meditsinskoy akademicheskoy nauki, 2012, no. 4, pp. 66–67. 11. Roberts L.A., Nosaka K., Coombes J.S., Peake J.M. Cold Water Immersion Enhances Recovery of Submaximal Muscle Function After Resistance Exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2014, vol. 307, no. 8, pp. 998–1008. DOI: 10.1152/ajpregu.00180.2014 12. Fröhlich M., Faude O., Klein M., Pieter A., Emrich E., Meyer T. Strength Training Adaptations After Cold Water Immersion. J. Strength Cond. Res., 2014, vol. 28, no. 9, pp. 2628–2633. DOI: 10.1519/JSC.0000000000000434 13. Fisher T.A., Kalenova L.F., Kolyvanova S.S. Kompleksnaya metodika kontrastnogo zakalivaniya detey 4–6 let [The Integrated Methodology of Contrasting Hardening for the Children Aged 4–6]. Rossiyskiy immunologicheskiy zhurnal, 2019, vol. 13, no. 2, pp. 605–607. 14. Fisher T.A., Petrov S.A., Dotsenko E.L., Sukhovey Yu.G. Dinamika emotsional’nogo sostoyaniya i fiziologicheskikh parametrov organizma pri dlitel’nom akvatermal’nom vozdeystvii [Dynamics of the Emotional State and Physiological Parameters of the Organism During Long-Term Aqua-Thermal Impact]. Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoy kul’tury, 2018, vol. 95, no. 3, pp. 57–62. DOI: 10.17116/kurort201895357 15. Gusenitsa S.G., Barachevskiy Yu.E., Ivanov A.O., Groshilin S.M., Yur’eva M.Yu. Primenenie kontrastnykh temperaturnykh vozdeystviy dlya povysheniya fizicheskoy vynoslivosti zdorovykh lits [Use of Contrast Temperature Effects for Promotion of Physical Endurance in Healthy Men]. Ekologiya cheloveka, 2012, no. 1, pp. 18–22. 16. Fedotchenko A.A., Solov’eva T.A., Pospelova O.V., Kameka D.L. Vliyanie sanatornykh tekhnologiy s primeneniem termoterapii na adaptatsionnyy potentsial lits s napryazhennoy trudovoy deyatel’nost’yu [Influence of Sanatorium Treatment with Thermotherapy on the Adaptive Capacity of Hard-Working People]. Byulleten’ Vostochno-Sibirskogo nauchnogo tsentra Sibirskogo otdeleniya RAMN, 2016, vol. 1, no. 3-1, pp. 20–23. 17. Huttunen P., Rintamäki H., Hirvonen J. Effect of Regular Winter Swimming on the Activity of the Sympathoadrenal System Before and After a Single Cold Water Immersion. Int. J. Circumpolar Health, 2001, vol. 60, no. 3, pp. 400–406. 18. Lubkowska A., Dołęgowska B., Szyguła Z., Bryczkowska I., Stańczyk-Dunaj M., Sałata D., Budkowska M. Winter-Swimming as a Building-Up Body Resistance Factor Inducing Adaptive Changes in the Oxidant/Antioxidant Status. Scand. J. Clin. Lab. Invest., 2013, vol. 73, no. 4, pp. 315–325. DOI: 10.3109/00365513.2013.773594 19. Altynova N.V. Vliyanie vegetativnogo gomeostaza na deyatel’nost’ serdechno sosudistoy sistemy [Influence of Autonomic Homeostasis on the Activity of the Cardiovascular System]. Shlyk N.I., Baevskiy R.M. (eds.). Ritm serdtsa i tip vegetativnoy regulyatsii v otsenke urovnya zdorov’ya naseleniya i funktsional’noy podgotovlennosti sportsmenov [Heart Rate and Type of Autonomic Regulation in Assessing the Health of the Population and Functional Training of Athletes]. Izhevsk, 2016, pp. 41–45. 20. Bocharov M.I. Termoregulyatsiya organizma pri kholodovykh vozdeystviyakh (obzor). Soobshchenie I [Thermoregulation in Cold Environments (Review). Report I]. Vestnik Severnogo (Arkticheskogo) federal’nogo universiteta. Ser.: Mediko-biologicheskie nauki, 2015, no. 1, pp. 5–15. 21. Granberg P.O. Human Physiology Under Cold Exposure. Arctic Med. Res., 1991, vol. 50, suppl. 6, pp. 23–27. 22. Tveita T., Mortensen E., Hevrøy O., Ytrehus K., Refsum H. Hemodynamic and Metabolic Effects of Hypothermia and Rewarming. Arctic Med. Res., 1991, vol. 50, no. 6, pp. 48–52. 23. Morrison S.F. Central Neural Control of Thermoregulation and Brown Adipose Tissue. Auton. Neurosci., 2016, vol. 196, pp. 14–24. DOI: 10.1016/j.autneu.2016.02.010 |
Make a Submission
INDEXED IN:
|