Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21 ABOUT JOURNAL
|
Section: Physiology Download (pdf, 0.8MB )UDC612.1+612.4DOI10.37482/2687-1491-Z097AuthorsAl’bina Z. Dautova* ORCID: https://orcid.org/0000-0003-3069-2178Valentina G. Shamratova** ORCID: https://orcid.org/0000-0002-7633-4264 *Volga Region State University of Physical Culture, Sport and Tourism (Kazan, Republic of Tatarstan, Russian Federation) **Bashkir State Medical University (Ufa, Republic of Bashkortostan, Russian Federation) AbstractThe aim of this paper was to study red blood cell parameters and levels of thyroid-stimulating hormone (TSH), free thyroxine (FT4) and cortisol, as well as their correlations in young male athletes and non-athletes, depending on their cardiorespiratory endurance. Materials and methods. The study involved 18 athletes (weightlifting, kickboxing) with the ranks ranging from First-Class Sportsman to Candidate for Master of Sport and 38 non-athletes. Hormone concentrations in the blood (cortisol, TSH, FT4) and blood parameters (haemoglobin, red blood cell count (RBC), their mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC) and haematocrit (НСТ)) were determined. The subjects’ physical endurance was assessed by calculating the cardiorespiratory index (heart rate divided by the respiratory rate). Results. In young men not involved in sports, no statistically significant differences between red blood cell parameters and hormonal status depending on the cardiorespiratory index were observed. At the same time, athletes with low exercise tolerance had statistically significantly lower MCV, MCHC, FT4, and TSH as well as elevated cortisol levels compared to endurance athletes. In young male non-athletes, we established an inverse correlation of TSH with RBC (r = –0.27) and HCT (r = –0.31) as well as of FT4 with RBC (r = –0.35), HCT (r = –0.28) and cardiorespiratory index at rest (r = 0.29). In athletes, cortisol correlated with exercise tolerance (r = 0.74), while FT4 correlated with cardiorespiratory index after exercise (r = 0.69). Thus, a decrease in thyroxine and an increase in cortisol blood levels in athletes correlate with lower cardiorespiratory endurance and exercise tolerance, while in non-athletes, with the activation of the erythropoietic function.Keywordshormonal status, cortisol, red blood cells, young men, motor activity, cardiorespiratory enduranceReferences1. Chicharro J.L., Hoyos J., Bandrés F., Terrados N., Fernández B., Lucía A. Thyroid Hormone Levels During a 3-Week Professional Road Cycling Competition. Horm. Res., 2001, vol. 56, pp. 159–164. DOI: 10.1159/0000481122. Moore A.W., Timmerman S., Brownlee K.K., Rubin D.A., Hackney A.C. Strenuous, Fatiguing Exercise: Relationship of Cortisol to Circulating Thyroid Hormones. Int. J. Endocrinol. Metab., 2005, vol. 3, no. 1, pp. 18–24. 3. Hackney A.C. Thyroid Axis, Prolactin, and Exercise. Ghigo E., Lanfranco F., Strasburger C.J. (eds.). Hormone Use and Abuse by Athletes. Stuttgart, 2011. Vol. 29, pp. 17–24. 4. Ciloglu F., Peker I., Pehlivan A., Karacabey K., Ilhan N., Saygin O., Ozmerdivenli R. Exercise Intensity and Its Effects on Thyroid Hormones. Neuro Endocrinol. Lett., 2005, vol. 26, no. 6, pp. 830–834. 5. Hackney A.C., Walz E.A. Hormonal Adaptation and the Stress of Exercise Training: The Role of Glucocorticoids. Trends Sport Sci., 2013, vol. 20, no. 4, pp. 165–171. 6. Banfi G., Colombini A., Lombardi G., Lubkowska A. Metabolic Markers in Sports Medicine. Adv. Clin. Chem., 2012, vol. 56, pp. 1–54. DOI: 10.1016/b978-0-12-394317-0.00015-7 7. Vikulov A.D., Margazin V.A., Boykov V.L. Diametr eritrotsitov kak nadezhnyy marker tekushchego funktsional’nogo sostoyaniya organizma i fizicheskoy rabotosposobnosti sportsmenov [Erythrocyte Diameter as a Reliable Marker of Current Functional State of Organism and Physical Performance of Athletes]. Lechebnaya fizkul’tura i sportivnaya meditsina, 2015, no. 1, pp. 10–14. 8. Miller G.D., Beharry A., Teramoto M., Lai A., Willick S.E., Eichner D. Hematological Changes Following an Ironman Triathlon: An Antidoping Perspective. Drug Test. Anal., 2019, vol. 11, no. 11-12, pp. 1747–1754. DOI: 10.1002/dta.2724 9. Parks R.B., Hetzel S.J., Brooks M.A. Iron Deficiency and Anemia Among Collegiate Athletes: A Retrospective Chart Review. Med. Sci. Sports Exerc., 2017, vol. 49, no. 8, pp. 1711–1715. DOI: 10.1249/MSS.0000000000001259 10. Dautova A.Z., Hazhieva E.A., Sadykova L.Z., Shamratova V.G. Morphofunctional Features of Erythrocytes in Young Women Depending on the Level of Motor Activity and Hereditary Factor. Hum. Sport Med., 2020, vol. 20, no. 3, pp. 25–33 (in Russ.). DOI: 10.14529/hsm200303 11. Dautova A.Z., Shamratova V.G., Vorob’eva E.V. Association of Polymorphisms of the ACE, CMA1 and BDKRB2 Genes with the State of Oxygen Transport System in Young Men with Different Levels of Motor Activity. J. Med. Biol. Res., 2019, vol. 7, no. 3, pp. 251–260. DOI: 10.17238/issn2542-1298.2019.7.3.251 12. Tarasova O.S., Sofronova S.I., Gaynullina D.K., Borzykh A.A., Mart’yanov A.A. Regulyatsiya produktsii oksida azota endoteliem sosudov pri fizicheskoy nagruzke: rol’ tireoidnykh gormonov [Control of Nitrogen Oxide Production by the Vascular Endothelium During Physical Exercise: Role of Thyroid Hormones]. Aviakosmicheskaya i ekologicheskaya meditsina, 2015, vol. 49, no. 2, pp. 55–62. 13. Hackney A.C., Kallman A., Hosick K.P., Rubin D.A., Battaglini C.L. Thyroid Hormonal Responses to Intensive Interval versus Steady-State Endurance Exercise Sessions. Hormones (Athens), 2012, vol. 11, no. 1, pp. 54–60. DOI: 10.1007/BF03401537 14. Kanaka-Gantenbein C. The Impact of Exercise on Thyroid Hormone Metabolism in Children and Adolescents. Horm. Metab. Res., 2005, vol. 37, no. 9, pp. 563–565. DOI: 10.1055/s-2005-870428 15. Popovic V., Duntas L.H. Leptin, TRH and Ghrelin: Influence on Energy Homeostasis at Rest and During Exercise. Horm. Metab. Res., 2005, vol. 37, no. 9, pp. 533–537. DOI: 10.1055/s-2005-870418 16. Nader E., Monedero D., Robert M., Skinner S., Stauffer E., Cibiel A., Germain M., Hugonnet J., Scheer A., Joly P., Renoux C., Connes P., Égée S. Impact of a 10 km Running Trial on Eryptosis, Red Blood Cell Rheology, and Electrophysiology in Endurance Trained Athletes: A Pilot Study. Eur. J. Appl. Physiol., 2020, vol. 120, no. 1, pp. 255–266. DOI: 10.1007/s00421-019-04271-x 17. Liu C.H., Tseng Y.F., Lai J.I., Chen Y.Q., Wang S.H., Kao W.F., Li L.H., Chiu Y.H., How C.K., Chang W.H. The Changes of Red Blood Cell Viscoelasticity and Sports Anemia in Male 24-hr Ultra-Marathoners. J. Chin. Med. Assoc., 2018, vol. 81, no. 5, pp. 475–481. DOI: 10.1016/j.jcma.2017.09.011 18. Makarova G.A., Kolesnikova N.V., Skibitskiy V.V., Baranovskaya I.B. Diagnosticheskiy potentsial kartiny krovi u sportsmenov [Diagnostic Potential of Blood Picture in Athletes]. Moscow, 2020. 256 p. 19. Montero D., Lundby C. Regulation of Red Blood Cell Volume with Exercise Training. Compr. Physiol., 2018, vol. 9, no. 1, pp. 149−164. DOI: 10.1002/cphy.c180004 20. Gunina L., Rybina I., Kotlyarenko L. Pokazateli gematologicheskogo gomeostaza v otsenke funktsional’nogo sostoyaniya sportsmenov [Hematological Homeostasis Indices in Evaluating Functional State of Athletes]. Nauka v olimpiyskom sporte, 2020, no. 3, pp. 65–75. |
Make a Submission
INDEXED IN:
|