CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Association Between the Degree of Lung Tissue Damage and Voluntary Breath-Holding Time in Adults After COVID-19. P. 307–316

Версия для печати

Section: Biological sciences

Download (pdf, 0.8MB )

UDC

612.2:616.24

DOI

10.37482/2687-1491-Z115

Authors

Kirill F. Borchev* ORCID: https://orcid.org/0000-0001-5541-8402
*Kaliningrad State Technical University (Kaliningrad, Russian Federation)
Corresponding author: Kirill Borchev, address: ul. Letnyaya 3, Kaliningrad, 236005, Russian Federation; e-mail: k.f.borchev@gmail.com

Abstract

Breath-holding time test is of interest to clinical practitioners; however, its diagnostic accuracy has not been sufficiently covered in literature. The aim of this paper was to study the relationship between breath-holding time and the degree of lung tissue damage in post-COVID-19 patients. Materials and methods. Medical documents of patients (n = 358) aged 38–86 years after COVID-19 diagnosed with bilateral multisegmental pneumonia were analysed. The degree of lung tissue damage was assessed using computed tomography. The association between breath-holding time and the degree of lung tissue damage in patients was analysed using two linear multiple regression models, one of which included sociodemographic and anthropometric factors. Results. On average, breathholding time in patients was 17.1 ± 8.1 s. Model 1 established а moderate association between the degree of lung tissue damage and breath-holding time (R = 0.331; p < 0.001), the model predicted 11 % (R2 = 0.110; F = 43.934; p < 0.001) of test variance. The predictive power of Model 2 increased by 2.4 % when the following variables were included: sex, age, place of residence, height, and weight (R2 = 0.134; F = 9.061; p < 0.01). A negative correlation between breath-holding time and the degree of lung tissue damage (β = –2.866; p < 0.05) and a positive correlation between breath-holding time and patients’ sex (β = 2.323; p < 0.05) were identified. Other variables included in the regression model (age, height, weight, and place of residence) produced no significant effect (p > 0.05). Thus, in patients with bilateral multisegmental pneumonia caused by COVID-19, the increase in voluntary breath-holding time was associated with the degree of lung tissue damage (according to computed tomography data) regardless of the patients’ weight, height, age or place of residence. It should be noted that, on average, men performed the test better than women.

Keywords

breath-holding time test, lung computed tomography, extent of lung tissue damage, consequences of COVID-19, impaired respiratory function, multiple linear regression

References

  1. Brosnahan S.B., Jonkman A.H., Kugler M.C., Munger J.S., Kaufman D.A. COVID-19 and Respiratory System Disorders: Current Knowledge, Future Clinical and Translational Research Questions. Arterioscler. Thromb. Vasc. Biol., 2020, vol. 40, no. 11, pp. 2586–2597. DOI: 10.1161/ATVBAHA.120.314515

  2. Inui S., Fujikawa A., Jitsu M., Kunishima N., Watanabe S., Suzuki Y., Umeda S., Uwabe Y. Chest CT Findings in Cases from the Cruise Ship Diamond Princess with Coronavirus Disease (COVID-19). Radiol. Cardiothorac. Imaging, 2020, vol. 2, no. 2. Art. no. e200110. DOI: 10.1148/ryct.2020200110

  3. Mo X., Jian W., Su Z., Chen M., Peng H., Peng P., Lei C., Chen R., Zhong N., Li S. Abnormal Pulmonary Function in COVID-19 Patients at Time of Hospital Discharge. Eur. Respir. J., 2020, vol. 55, no. 6. Art. no. 2001217. DOI: 10.1183/13993003.01217-2020

  4. Huang Y., Tan C., Wu J., Chen M., Wang Z., Luo L., Zhou X., Liu X., Huang X., Yuan S., Chen C., Gao F., Huang J., Shan H., Liu J. Impact of Coronavirus Disease 2019 on Pulmonary Function in Early Convalescence Phase. Respir. Res., 2020, vol. 21, no. 1. Art. no. 163. DOI: 10.1186/s12931-020-01429-6

  5. Temporary Guidelines: Prevention, Diagnosis and Treatment of the Novel Coronavirus Infection (COVID-19). Ministry of Health of the Russian Federation. Version 16 (18.08.2022). Available at: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/060/193/original/%D0%92%D0%9C%D0%A0_COVID-19_V16.pdf (accessed: 12 February 2022) (in Russ.).

  6. Bubnova M.G., Shlyakhto E.V., Aronov D.M., Belevsky A.S., Gerasimenko M.Yu., Glezer M.G., Gordeev M.N., Drapkina O.M., Ivanova G.E., Ioseliani D.G., Karamnova N.S., Kosmacheva E.D., Kuleshov A.V., Kukshina A.A., Lyadov K.V., Lyamina N.P., Makarova M.R., Meshcheryakova N.N., Nikityuk D.B., Pasechnik I.N., Persiyanova-Dubrova A.L., Pogonchenkova I.V., Svet A.V., Starodubova A.V., Tutelian V.A. Coronavirus Disease 2019: Features of Comprehensive Cardiac and Pulmonary Rehabilitation. Russ. J. Cardiol., 2021, vol. 26, no. 5. Art. no. 4487 (in Russ.). DOI: 10.15829/1560-4071-2021-4487

  7. Messineo L., Perger E., Corda L., Joosten S.A., Fanfulla F., Pedroni L., Terrill P.I., Lombardi C., Wellman A., Hamilton G.S., Malhotra A., Vailati G., Parati G., Sands S.A. Breath-Holding as a Novel Approach to Risk Stratification in COVID-19. Crit. Care, 2021, vol. 25, no. 1. Art. no. 208. DOI: 10.1186/s13054-021-03630-5

  8. Borchev K.F., Bondarev D.V., Muromtsev A.B., Pechernaya N.V. Changes in Respiratory Function and Physical Performance in Middle-Aged and Old Inpatients Recovering from COVID-19 After a Rehabilitation Program. Adv. Gerontol., 2021, vol. 34, no. 6, pp. 934–940 (in Russ.). DOI: 10.34922/AE.2021.34.6.016

  9. Ideguchi H., Ichiyasu H., Fukushima K., Okabayashi H., Akaike K., Hamada S., Nakamura K., Hirosako S., Kohrogi H., Sakagami T., Fujii K. Validation of a Breath-Holding Test as a Screening Test for Exercise-Induced Hypoxemia in Chronic Respiratory Diseases. Chron. Respir. Dis., 2021, vol. 18. Art. no. 14799731211012965. DOI: 10.1177/14799731211012965

  10. Donina Zh.A. Prichiny gipoksemii pri COVID-19 [Causes of Hypoxemia in COVID-19]. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova, 2022, vol. 108, no. 1, pp. 3–12. DOI: 10.31857/S0869813922010058

  11. Borchev K.F. Breath-Holding Study in Adults After COVID-19. J. Med. Biol. Res., 2022, vol. 10, no. 3, pp. 191–200. DOI: 10.37482/2687-1491-Z104

  12. Abdurakhmanov R.Sh. Fiziologicheskie aspekty gipoksii nagruzki [Physiological Aspects of Tension Hypoxia]. Biomeditsina (Baku), 2004, no. 1, pp. 3–9.

  13. LoMauro A., Aliverti A. Sex Differences in Respiratory Function. Breathe (Sheff.), 2018, vol. 14, no. 2, pp. 131–140. DOI: 10.1183/20734735.000318

  14. Papadopoulos V., Li L., Samplaski M. Why Does COVID-19 Kill More Elderly Men Than Women? Is There a Role for Testosterone? Andrology, 2021, vol. 9, no. 1, pp. 65–72. DOI: 10.1111/andr.12868

  15. Amgalan A., Malinowski A.K., Othman M. COVID-19 and Sex-/Gender-Specific Differences: Understanding the Discrimination. Semin. Thromb. Hemost., 2021, vol. 47, no. 4, pp. 341–347. DOI: 10.1055/s-0040-1715455

  16. Janssens J.P., Pache J.C., Nicod L.P. Physiological Changes in Respiratory Function Associated with Ageing. Eur. Respir. J., 1999, vol. 13, no. 1, pp. 197–205. DOI: 10.1034/j.1399-3003.1999.13a36.x

  17. Sharma G., Goodwin J. Effect of Aging on Respiratory System Physiology and Immunology. Clin. Interv. Aging, 2006, vol. 1, no. 3, pp. 253–260. DOI: 10.2147/ciia.2006.1.3.253

  18. Delapille P., Verin E., Tourny-Chollet C. Ventilatory Adaptations for Breath Holding in Divers. Rev. Mal. Respir., 2002, vol. 19, no. 2, pt. 1, pp. 217–228 (in Fr.).

  19. Rayroux C., Gasche-Soccal P., Janssens J.-P. Air Pollution and Its Impact on the Respiratory System. Rev. Med. Suisse, 2020, vol. 16, no. 715, pp. 2211–2216 (in Fr.).

  20. Nikolaev A.Yu. Fizicheskaya aktivnost’ i malopodvizhnoe povedenie vzroslykh v gorode i na sele po dannym oprosnika IPAQ [Physical Activity and Sedentary Behaviour of Adults in the City and in the Countryside According to IPAQ]. Aktual’nye problemy gumanitarnykh i estestvennykh nauk, 2017, no. 3-2, pp. 89–93.

  21. Trembach N., Zabolotskikh I. Breath-Holding Test in Evaluation of Peripheral Chemoreflex Sensitivity in Healthy Subjects. Respir. Physiol. Neurobiol., 2017, vol. 235, pp. 79–82. DOI: 10.1016/j.resp.2016.10.005

  22. Novikov V.S., Andrianov V.P., Bortnovskiy V.N., Egorov V.A., Lesnoy N.K., Lobzin Yu.V., Mastyukov A.A., Mirolyubov A.V., Morozov V.G., Khavinson V.Kh. Metody issledovaniya v fiziologii voennogo truda [Methods of Research into the Physiology of Military Work]. Мoscow, 1993. 240 p.

  23. Cotes J.E., Chinn D.J. Changes of Body-Mass Index: An Important Parameter in Long-Term Investigation of Pulmonary Function. Pulmonologiya, 1996, no. 4, pp. 74–76 (in Russ.).

  24. Zabolotskikh I.B., Shifman E.M. (eds.). Anesteziologiya-reanimatologiya: klinicheskie rekomendatsii [Anaesthesiology and Intensive Care Medicine: Clinical Guidelines]. Moscow, 2016. 947 p.

  25. Savushkina O.I., Malashenko M.M., Chernyak A.V., Kryukov E.V., Sinitsyn E.A., Zykov K.A. Issledovanie sily dykhatel’nykh myshts u bol’nykh, perenesshikh COVID-19 [Respiratory Muscle Strength in Patients After COVID-19]. Meditsina ekstremal’nykh situatsiy, 2021, vol. 23, no. 3, pp. 52–56. DOI: 10.47183/mes.2021.025

  26. Parkes M.J. Breath-Holding and Its Breakpoint. Exp. Physiol., 2006, vol. 91, no. 1, pp. 1–15. DOI: 10.1113/expphysiol.2005.031625




Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North