CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Hygienic Characteristics of the Air Pollution in the Welding Working Area in Shipbuilding (the Case of St. Petersburg Shipyards). C. 451-461

Версия для печати

Section: Preventive medicine

Download (pdf, 0.5MB )

UDC

613.633:629.5.081.2

DOI

10.37482/2687-1491-Z163

Authors

Мaksim V. Chashchin*/** ORCID: https://orcid.org/0000-0001-6759-5481
Anton I. Atabekov** ORCID: https://orcid.org/0000-0001-9735-5729
Еlena А. Kayk** ORCID: https://orcid.org/0000-0001-7971-5866
Аndrey B. Gudkov*** ORCID: https://orcid.org/0000-0001-5923-0941
Ol’ga N. Popova*** ORCID: https://orcid.org/0000-0002-0135-4594

 *National Research University Higher School of Economics
(Moscow, Russian Federation)
**North-Western State Medical University named after I.I. Mechnikov
(St. Petersburg, Russian Federation)
***Northern State Medical University
(Arkhangelsk, Russian Federation)

Corresponding author: Maksim Chashchin, address: ul. Kirochnaya 41, St. Petersburg, 191015, Russian Federation; 
e-mail: maksim.chaschin@szgmu.ru

Abstract

Abstract. Laboratory tests of air pollution at shipbuilding enterprises have shown that dust particles of welding aerosol consist of both poorly soluble Al, Fe, Ti and Pb compounds and Co, Cr, Cu, Mn and V compounds that are highly soluble in an artificial solution, while their ratio varies depending on the welding method. The purpose of this article was to perform a hygiene assessment of the air pollution in the shipyards’ working areas, taking into account solubility test results for the metal compounds contained in the welding aerosol. Materials and methods. The object of the study were the welding processes of two shipyards in St. Petersburg, Russia. We collected 97 air samples from under the welder’s face shield using 5.0 μm membrane filters and SKC Sidekick personal pumps. The soluble and insoluble chemical compounds of the welding aerosol in the artificial solution were analysed using an inductively coupled plasma mass spectrometer (Thermo Scientific Element XR) and an inductively coupled plasma optical emission spectrometer (Perkin Elmer Optima 7300V). Results. Significant differences were established between the enterprises in the shift-weighted average concentrations of chemicals in the air of welding areas: by the factor of 19.6 for manganese (181.04 and 3563.80 μg/m3) and 1.5 for iron (1291.71 and 862.49 μg/m3). We recorded a wide range of shift-weighted average concentrations of welding aerosols with a complex chemical composition in the welding working areas. However, there were significant hygienic differences in the test results between the shipyards. One of the important characteristics of welding aerosol studied here is the solubility of its elements, which determines the ability of toxic substances to penetrate through the lung tissue into the bloodstream, causing acute or chronic health effects. Thus, hygiene assessments of the air pollution in the working areas in shipbuilding should be based on a personalized approach and take into account changes in the welding methods applied, types of weldin g materials, etc.

Keywords

welding aerosol, hygienic assessment of working conditions, harmful and hazardous occupational factors, chemical solubility, shipbuilding

References

  1. Gorbach V.D. Svarochnoe proizvodstvo v sudostroenii [Welding Processes in Shipbuilding]. Mir svarki, 2022, no. 1, pp. 12–14.
  2. Review of the Labour Market in the Shipbuilding Sector: Results of the First Quarter of 2021. 6 May 2021. Available at: https://spb.hh.ru/article/28489 (accessed: 28 March 2023) (in Russ.).
  3. Sokolova L.A., Popova O.N., Kalinina M.M., Bogdanov M.Yu., Kocheshova G.F., Gudkov A.B. Prognozirovanie riska razvitiya professional’nykh zabolevaniy sredi sborshchikov korpusov metallicheskikh sudov mashinostroitel’nogo predpriyatiya [Prediction of Occupational Diseases Risk Among Assemblers of Vessel Metal Hulls of Machine Building Plant]. Ekologiya cheloveka, 2015, no. 1, pp. 10–14.
  4. Krasovskiy V.O., Khalfin R.R., Galiullin A.R. K poisku real’nykh kontsentratsiy aerozolya, deystvuyushchego na elektrosvarshchika [To Search of Real Concentration of the Aerosol of the Acting Electric Welder]. Sovremennye problemy nauki i obrazovaniya, 2017, no. 5. Art. no. 21.
  5. Minakova P.S., Voyshcheva A.S., Ignatova V.R. Analiz vrednykh i opasnykh proizvodstvennykh faktorov pri ruchnoy dugovoy svarke na rabochem meste svarshchika [Analysis of Manual Arc Welding Harmful and Dangerous Production Factors at the Welder’s Workplace]. Bezopasnost’ i okhrana truda, 2020, no. 4, pp. 36–38.
  6. Oblamskaya I.S., Pestereva N.S., Skomorokhova E.A., Karpenko M.N. Priznaki neyrovospaleniya u krys s margantsevoy toksicheskoy entsefalopatiey [Signs of Neuroinflammation in Rats with Manganese Encephalopathy]. Meditsinskiy akademicheskiy zhurnal, 2016, vol. 16, no. 4, pp. 32–33.
  7. Ivleva I., Pestereva N., Zubov A., Karpenko M. Intranasal Exposure of Manganese Induces Neuroinflammation and Disrupts Dopamine Metabolism in the Striatum and Hippocampus. Neurosci. Lett., 2020, vol. 738. Art. no. 135344. https://doi.org/10.1016/j.neulet.2020.135344
  8. Chashchin M.V., Ellingsen D.G., Chashchin V.P., Cabushka Ya.S., Thomassen I., Berlinger B., Bast-Pettersen R., Kusraeva Z.S., Fedorov V.N., Hliabova P.M., Kolesnikova T.A. Otsenka ekspozitsii k soedineniyam margantsa i zheleza u svarshchikov [Exposure Assessment of Airborne Manganese and Iron in Welders]. Zdorov’e naseleniya i sreda obitaniya – ZNiSO, 2014, no. 10, pp. 28–31.
  9. Helsel D.R. Statistics for Censored Environmental Data Using Minitab® and R. Hoboken, 2012. 324 p. https://doi.org/10.1002/9781118162729
  10. Turnbull B.W. The Empirical Distribution Function with Arbitrarily Grouped, Censored and Truncated Data. J. R. Stat. Soc. B, 1976, vol. 38, no. 3, pp. 290–295. https://doi.org/10.1111/j.2517-6161.1976.tb01597.x
  11. Kuznetsov D.A., Ignatov M.N., Ignatova A.M. Fiziko-khimicheskie metody issledovaniya tverdoy sostavlyayushchey svarochnykh aerozoley [Physics-Chemical Methods of Studies of Solid Part Welding Fumes]. Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mashinostroenie, materialovedenie, 2014, vol. 16, no. 4, pp. 140–150.
  12. Grishagin V.M. Tverdaya sostavlyayushchaya svarochnogo aerozolya kak napolnitel’ metallokeramicheskikh izolyatsionnykh vtulok svarochnykh gorelok [Solid Ingredient of Welding Aerosol as Filler for Metal Ceramic Insulating Bushings of Gas Torches]. Available at: https://waste.ua/eco/2009/industrial-waste/aerosol (accessed: 29 March 2023).
  13. Grishagin V.M. Svarochnyy aerozol’: obrazovanie, issledovanie, lokalizatsiya, primenenie [Welding Aerosol: Education, Research, Localization, Application]. Tomsk, 2011. 213 p.
  14. Rudskoy A.I., Parshin S.G. Peredovye trendy v metallurgii i svarivaemosti khladostoykikh i kriogennykh staley dlya Arktiki i vodorodnoy energetiki [Cutting-Edge Trends in Metallurgy and Weldability of Cold-Resistant and Cryogenic Steels for the Arctic and Hydrogen Energy Industry]. Mir svarki, 2022, no. 1, pp. 15–18.



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North