CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Experimental Methods of Studying the Neurophysiological Features of Esports Players (Review). C. 471-482

Версия для печати

Section: Review articles

Download (pdf, 0.5MB )

UDC

[796.1.071.2/.077.2:004.946]:612.821

DOI

10.37482/2687-1491-Z166

Authors

Vasiliy F. Pyatin* ORCID: https://orcid.org/0000-0002-9310-9413
Yuliya V. Myakisheva* ORCID: https://orcid.org/0000-0003-0947-511X
Dar՚ya S. Gromova* ORCID: https://orcid.org/0000-0003-0650-0252
Andrey F. Pavlov* ORCID: https://orcid.org/0000-0002-0614-7914

 *Samara State Medical University
(Samara, Russian Federation)

Corresponding author: Andrey Pavlov, address: ul. Artsybushevskaya 171, Samara, 443001, Russian Federation; 
e-mail: a.f.pavlov@samsmu.ru

Abstract

Abstract. Electronic sports (esports) is a form of competition using video games. Competitions in esports help to develop cognitive skills, abstract thinking, memory, spatial thinking and the ability to navigate the virtual space under time pressure. In this regard, neurophysiological mechanisms implementing and regulating physiological processes when playing esports are a promising topic of research. According to L.P. Matveyev’s classification (2017), esports belongs to the fifth group of sports activities, which is characterized by applying abstract logic under decreased motor activity. Computer games stimulate the development of cognitive functions, such as reaction time, speed of decision making, attention, hand coordination and others, which suggests that the psycho-emotional and psycho-physiological parameters in esports players are similar to those in other athletes. However, it should be noted that the neurophysiological mechanisms of these processes in esports players have been little studied. Since these mechanisms are based on the activity of the central nervous system, it is interesting to consider the bioelectric activity of the cerebral hemispheres in esports players in relation to their cognitive style. In the PubMed, Scopus and Google Scholar electronic libraries as well as a number of Russian scientific databases, the authors entered the following search queries: video games, video game addiction, esports, cognitive functions, neurophysiology of esports players, neurophysiological research methods in esports, non-invasive research methods. Based on the literature analysis, methods were identified that allow us to assess the functional state of the brain when processing sensory signals and physiological changes in higher nervous activity as well as to determine peak amplitude of muscle force through signal integration. Further, methods demonstrating controversial results are listed, which do not make it possible to establish the mechanisms of the nervous system. In addition, promising methods are identified that allow us to read brain activity using infrared light.

Keywords

esports, esports player, cognitive load, neuronal excitability, functional state of the brain, neurophysiological mechanisms

References

  1. Stepanov A., Lange A., Khromov N., Korotin A., Burnaev E., Somov A. Sensors and Game Synchronization for Data Analysis in eSports. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). Helsinki, 2019, pp. 933−938. https://doi.org/10.1109/INDIN41052.2019.8972249
  2. Andreu-Perez A.R., Kiani M., Andreu-Perez J., Reddy P., Andreu-Abela J., Pinto M., Izzetoglu K. Single-Trial Recognition of Video Gamer’s Expertise from Brain Haemodynamic and Facial Emotion Responses. Brain Sci., 2021, vol. 11, no. 1. Art. no. 106. https://doi.org/10.3390/brainsci11010106
  3. Gong D., Ma W., Liu T., Yan Y., Yao D. Electronic-Sports Experience Related to Functional Enhancement in Central Executive and Default Mode Areas. Neural Plast., 2019, vol. 2019. Art. no. 1940123. https://doi.org/10.1155/2019/1940123
  4. Koshy A., Koshy G.M. The Potential of Physiological Monitoring Technologies in Esports. Int. J. Esports, 2020, vol. 1, no. 1.
  5. Sharifat H., Suppiah S. Electroencephalography-Detected Neurophysiology of Internet Addiction Disorder and Internet Gaming Disorder in Adolescents − A Review. Med. J. Malaysia, 2021, vol. 76, no. 3, pp. 401−413.
  6. Watanabe K., Saijo N., Minami S., Kashino M. The Effects of Competitive and Interactive Play on Physiological State in Professional Esports Players. Heliyon, 2021, vol. 7, no. 4. Art. no. e06844. https://doi.org/10.1016/j.heliyon.2021.e06844
  7. Martin-Niedecken A.L., Schättin A. Let the Body’n’Brain Games Begin: Toward Innovative Training Approaches in eSports Athletes. Front. Psychol., 2020, vol. 11. Art. no. 138. https://doi.org/10.3389/fpsyg.2020.00138
  8. Yang X., McCoy E., Anaya-Boig E., Avila-Palencia I., Brand C., Carrasco-Turigas G., Dons E., Gerike R., Goetschi T., Nieuwenhuijsen M., Pablo Orjuela J., Int Panis L., Standaert A., de Nazelle A. The Effects of Traveling in Different Transport Modes on Galvanic Skin Response (GSR) as a Measure of Stress: An Observational Study. Environ. Int., 2021, vol. 156. Art. no. 106764. https://doi.org/10.1016/j.envint.2021.106764
  9. Tsuji T., Arikuni F., Sasaoka T., Suyama S., Akiyoshi T., Soh Z., Hirano H., Nakamura R., Saeki N., Kawamoto M., Yoshizumi M., Yoshino A., Yamawaki S. Peripheral Arterial Stiffness During Electrocutaneous Stimulation Is Positively Correlated with Pain-Related Brain Activity and Subjective Pain Intensity: An fMRI Study. Sci. Rep., 2021, vol. 11, no. 1. Art. no. 4425. https://doi.org/10.1038/s41598-021-83833-6
  10. DiFrancisco-Donoghue J., Werner W.G., Douris P.C., Zwibel H. Esports Players, Got Muscle? Competitive Video Game Players’ Physical Activity, Body Fat, Bone Mineral Content, and Muscle Mass in Comparison to Matched Controls. J. Sport Health Sci., 2020, vol. 11, no. 6, pp. 725–730. https://doi.org/10.1016/j.jshs.2020.07.006
  11. Sousa A., Ahmad S.L., Hassan T., Yuen K., Douris P., Zwibel H., DiFrancisco-Donoghue J. Physiological and Cognitive Functions Following a Discrete Session of Competitive Esports Gaming. Front. Psychol., 2020, vol. 11. Art. no. 1030. https://doi.org/10.3389/fpsyg.2020.01030
  12. Yamagata K., Yamagata L.M., Abela M. A Review Article of the Cardiovascular Sequalae in Esport Athletes: A Cause for Concern? Hellenic J. Cardiol., 2022, vol. 68, pp. 40−45. https://doi.org/10.1016/j.hjc.2022.06.005
  13. Church D., Stapleton P., Vasudevan A., O’Keefe T. Clinical EFT as an Evidence-Based Practice for the Treatment of Psychological and Physiological Conditions: A Systematic Review. Front. Psychol., 2022, vol. 13. Art. no. 951451. https://doi.org/10.3389/fpsyg.2022.951451
  14. Melentev N., Somov A., Burnaev E., Strelnikova I., Strelnikova G., Melenteva E., Menshchikov A. eSports Players Professional Level and Tiredness Prediction Using EEG and Machine Learning. 2020 IEEE SENSORS. Rotterdam, 2020, pp. 1−4. https://doi.org/10.1109/SENSORS47125.2020.9278704
  15. Seidel-Marzi O., Ragert P. Neurodiagnostics in Sports: Investigating the Athlete’s Brain to Augment Performance and Sport-Specific Skills. Front. Hum. Neurosci., 2020, vol. 14. Art. no. 133. https://doi.org/10.3389/fnhum.2020.00133
  16. Glass J., McGregor C. Towards Player Health Analytics in Overwatch. 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH). Vancouver, 2020, pp. 1−5. https://doi.org/10.1109/SeGAH49190.2020.9201733
  17. Friedl K.E. Military Applications of Soldier Physiological Monitoring. J. Sci. Med. Sport, 2018, vol. 21, no. 11, pp. 1147–1153. https://doi.org/10.1016/j.jsams.2018.06.004
  18. Soler-Dominguez J.L., Gonzalez C. Using EEG and Gamified Neurofeedback Environments to Improve eSports Performance: Project Neuroprotrainer. Proceedings of the 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2021). Vol. 1: GRAPP. SciTePress, 2021, pp. 278−283. https://doi.org/10.5220/0010314502780283
  19. Gong A., Gu F., Nan W., Qu Y., Jiang C., Fu Y. A Review of Neurofeedback Training for Improving Sport Performance from the Perspective of User Experience. Front. Neurosci., 2021, vol. 15. Art. no. 638369. https://doi.org/10.3389/fnins.2021.638369
  20. Bolkenius D., Dumps C., Rupprecht B. Nahinfrarotspektroskopie: Technik, Entwicklung, aktueller Einsatz und Ausblick. Anaesthesist, 2021, vol. 70, no. 3, pp. 190–203. https://doi.org/10.1007/s00101-020-00837-z
  21. Crispin P., Forwood K. Near Infrared Spectroscopy in Anemia Detection and Management: A Systematic Review. Transfus. Med. Rev., 2021, vol. 35, no. 1, pp. 22–28. https://doi.org/10.1016/j.tmrv.2020.07.003
  22. Pratiher S., Radhakrishnan A., Sahoo K.P., Alam S., Kerick S.E., Banerjee N., Ghosh N., Patra A. Classification of VR-Gaming Difficulty Induced Stress Levels Using Physiological (EEG & ECG) Signals and Machine Learning. TechRxiv. Preprint, 2021. https://doi.org/10.36227/techrxiv.16873471.v1
  23. Pedraza-Ramirez I., Musculus L., Raab M., Laborde S. Setting the Scientific Stage for Esports Psychology: A Systematic Review. Int. Rev. Sport Exerc. Psychol., 2020, vol. 13, no. 1, pp. 319–352. https://doi.org/10.1080/1750984X.2020.1723122
  24. Listman J.B., Tsay J.S., Kim H.E., Mackey W.E., Heeger D.J. Long-Term Motor Learning in the “Wild” with High Volume Video Game Data. Front. Hum. Neurosci., 2021, vol. 15. Art. no. 777779. https://doi.org/10.3389/fnhum.2021.777779
  25. Toth A.J., Ramsbottom N., Kowal M., Campbell M.J. Converging Evidence Supporting the Cognitive Link Between Exercise and Esport Performance: A Dual Systematic Review. Brain Sci., 2020, vol. 10, no. 11. Art. no. 859. https://doi.org/10.3390/brainsci10110859
  26. Herold F., Gronwald T., Scholkmann F., Zohdi H., Wyser D., Müller N.G., Hamacher D. New Directions in Exercise Prescription: Is There a Role for Brain-Derived Parameters Obtained by Functional Near-Infrared Spectroscopy? Brain Sci., 2020, vol. 10, no. 6. Art. no. 342. https://doi.org/10.3390/brainsci10060342
  27. Forcione M., Chiarelli A.M., Perpetuini D., Davies D.J., O’Halloran P., Hacker D., Merla A., Belli A. Tomographic Task-Related Functional Near-Infrared Spectroscopy in Acute Sport-Related Concussion: An Observational Case Study. Int. J. Mol. Sci., 2020, vol. 21, no. 17. Art. no. 6273. https://doi.org/10.3390/ijms21176273
  28. Yokota Y., Soshi T., Naruse Y. Error-Related Negativity Predicts Failure in Competitive Dual-Player Video Games. PLoS One, 2019, vol. 14, no. 2. Art. no. e0212483. https://doi.org/10.1371/journal.pone.0212483
  29. Deng X., Wang J., Zang Y., Li Y., Fu W., Su Y., Chen X., Du B., Dong Q., Chen C., Li J. Intermittent Theta Burst Stimulation over the Parietal Cortex Has a Significant Neural Effect on Working Memory. Hum. Brain Mapp., 2022, vol. 43, no. 3, pp. 1076−1086. https://doi.org/10.1002/hbm.25708
  30. Sun W., Guo Z., Yang Z., Wu Y., Lan W., Liao Y., Wu X., Liu Y. A Review of Recent Advances in Vital Signals Monitoring of Sports and Health via Flexible Wearable Sensors. Sensors (Basel), 2022, vol. 22, no. 20. Art. no. 7784. https://doi.org/10.3390/s22207784
  31. Antal A., Luber B., Brem A.K., Bikson M., Brunoni A.R., Cohen Kadosh R., Dubljević V., Fecteau S., Ferreri F., Flöel A., Hallett M., Hamilton R.H., Herrmann C.S., Lavidor M., Loo C., Lustenberger C., Machado S., Miniussi C., Moliadze V., Nitsche M.A., Rossi S., Rossini P.M., Santarnecchi E., Seeck M., Thut G., Turi Z., Ugawa Y., Venkatasubramanian G., Wenderoth N., Wexler A., Ziemann U., Paulus W. Non-Invasive Brain Stimulation and Neuroenhancement. Clin. Neurophysiol. Pract., 2022, vol. 7, pp. 146−165. https://doi.org/10.1016/j.cnp.2022.05.002
  32. Fang Q., Fang C., Li L., Song Y. Impact of Sport Training on Adaptations in Neural Functioning and Behavioral Performance: A Scoping Review with Meta-Analysis on EEG Research. J. Exerc. Sci. Fit., 2022, vol. 20, no. 3, pp. 206–215. https://doi.org/10.1016/j.jesf.2022.04.001
  33. Kiani M., Andreu-Perez J., Hagras H., Papageorgiou E.I., Prasad M., Lin C.-T. Effective Brain Connectivity for fNIRS with Fuzzy Cognitive Maps in Neuroergonomics. IEEE Trans. Cogn. Dev. Syst., 2022, vol. 14, no. 1, pp. 50–63. https://doi.org/10.1109/TCDS.2019.2958423
  34. Merletti R., Muceli S. Tutorial. Surface EMG Detection in Space and Time: Best Practices. J. Electromyogr. Kinesiol., 2019, vol. 49. Art. no. 102363. https://doi.org/10.1016/j.jelekin.2019.102363
  35. Campanini I., Disselhorst-Klug C., Rymer W.Z., Merletti R. Surface EMG in Clinical Assessment and Neurorehabilitation: Barriers Limiting Its Use. Front. Neurol., 2020, vol. 11. Art. no. 934. https://doi.org/10.3389/fneur.2020.00934
  36. Besomi M., Hodges P.W., Clancy E.A., Van Dieën J., Hug F., Lowery M., Merletti R., Søgaard K., Wrigley T., Besier T., Carson R.G., Disselhorst-Klug C., Enoka R.M., Falla D., Farina D., Gandevia S., Holobar A., Kiernan M.C., McGill K., Perreault E., Rothwell J.C., Tucker K. Consensus for Experimental Design in Electromyography (CEDE) Project: Amplitude Normalization Matrix. J. Electromyogr. Kinesiol., 2020, vol. 53. Art. no. 102438. https://doi.org/10.1016/j.jelekin.2020.102438
  37. Taborri J., Keogh J., Kos A., Santuz A., Umek A., Urbanczyk C., van der Kruk E., Rossi S. Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview. Appl. Bionics Biomech., 2020, vol. 23. Art. no. 2041549. https://doi.org/10.1155/2020/2041549
  38. Hyland-Monks R., Marchant D., Cronin L. Self-Paced Endurance Performance and Cerebral Hemodynamics of the Prefrontal Cortex: A Scoping Review of Methodology and Findings. Percept. Mot. Skills, 2022, vol. 129, no. 4, pp. 1089–1114. https://doi.org/10.1177/00315125221101017
  39. Tuesta M., Yáñez-Sepúlveda R., Verdugo-Marchese H., Mateluna C., Alvear-Ordenes I. Near-Infrared Spectroscopy Used to Assess Physiological Muscle Adaptations in Exercise Clinical Trials: A Systematic Review. Biology (Basel), 2022, vol. 11, no. 7. Art. no. 1073. https://doi.org/10.3390/biology11071073
  40. Campanini I., Merlo A., Disselhorst-Klug C., Mesin L., Muceli S., Merletti R. Fundamental Concepts of Bipolar and High-Density Surface EMG Understanding and Teaching for Clinical, Occupational, and Sport Applications: Origin, Detection, and Main Errors. Sensors (Basel), 2022, vol. 22, no. 11. Art. no. 4150. https://doi.org/10.3390/s22114150
  41. Sun J., Liu G., Sun Y., Lin K., Zhou Z., Cai J. Application of Surface Electromyography in Exercise Fatigue: A Review. Front. Syst. Neurosci., 2022, vol. 16. Art. no. 893275. https://doi.org/10.3389/fnsys.2022.893275
  42. Novak J. Assessment of the Impact of Acute Stress in Cases of Necessary Defense by Czech Courts. Ido Mov. Cult. J. Martial Arts Anthropol., 2019, vol. 19, no. 1S, pp. 89−91. https://doi.org/10.14589/ido.19.1S.13
  43. Domínguez-Jiménez J.A., Campo-Landines K.C., Martínez-Santos J.C., Contreras-Ortiz S.H. Emotion Detection Through Biomedical Signals: A Pilot Study. Proceedings of the 14th International Symposium on Medical Information Processing and Analysis. Vol. 10975. SPIE, 2018. Art. no. 1097506. https://doi.org/10.1117/12.2511598
  44. VaezMousavi S.M., Barry R.J., Clarke A.R. Individual Differences in Task-Related Activation and Performance. Physiol. Behav., 2009, vol. 98, no. 3, pp. 326−330. https://doi.org/10.1016/j.physbeh.2009.06.007
  45. Mavros P., Wälti J.M., Nazemi M., Ong C.H., Hölscher C. A Mobile EEG Study on the Psychophysiological Effects of Walking and Crowding in Indoor and Outdoor Urban Environments. Sci. Rep., 2022, vol. 12, no. 1. Art. no. 18476. https://doi.org/10.1038/s41598-022-20649-y
  46. Mirifar A., Keil A., Ehrlenspiel F. Neurofeedback and Neural Self-Regulation: A New Perspective Based on Allostasis. Rev. Neurosci., 2022, vol. 33, no. 6, pp. 607−629. https://doi.org/10.1515/revneuro-2021-0133
  47. Abed Alah M., Abdeen S., Selim N. Healthy Minds for Healthy Hearts: Tackling Stress-Induced Cardiac Events During the FIFA World Cup 2022. Vasc. Health Risk Manag., 2022, vol. 18, pp. 851−856. https://doi.org/10.2147/vhrm.s390549
  48. Hoenig T., Tenforde A.S., Strahl A., Rolvien T., Hollander K. Does Magnetic Resonance Imaging Grading Correlate with Return to Sports After Bone Stress Injuries? A Systematic Review and Meta-Analysis. Am. J. Sports Med., 2022, vol. 50, no. 3, pp. 834−844. https://doi.org/10.1177/0363546521993807
  49. Leis O., Lautenbach F. Psychological and Physiological Stress in Non-Competitive and Competitive Esports Settings: A Systematic Review. Psychol. Sport Exerc., 2020, vol. 51. Art. no. 101738.



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North