Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/
|
Effect of Sodium Cromoglycate and Intramural Ganglia on TNFR1 Gene Expression in the Bronchi of Rats with Ovalbumin-Induced Bronchial Asthma. C. 32-39
|
|
Section: Biological sciences
Download
(pdf, 0.5MB )
UDC
591.423+616.233
DOI
10.37482/2687-1491-Z176
Abstract
The purpose of this article was to study TNFR1 gene expression in the bronchi of rats with ovalbumininduced bronchial asthma, taking into account intramural metasympathetic ganglia and the stabilization of mast cell membranes with sodium cromoglycate. In this paper, gene expression refers to the accumulation of mRNA in bronchial tissues. Expression of the TNFR1 gene and receptor plays an important role in the development of allergic asthma. For this reason, the TNFR1 gene was chosen for the analysis. Materials and methods. Bronchial samples from Wistar rats were studied using real-time polymerase chain reaction. For experiments, bronchi with ganglia (in the bifurcation area) and bronchi without ganglia (straight sections) were taken. The material was collected from 7 groups of rats: with ovalbumin-induced bronchial asthma (6 groups) and control animals (1 group). Mast cell stabilizer sodium cromoglycate was used to treat 3 groups of rats with simulated asthma. Results. It was found that the expression of mRNA encoding TNFR1 increases in rats developing bronchial asthma. In bronchial samples with ganglia, TNFR1 gene expression was higher than in bronchial preparations without ganglia. Under the influence of sodium cromoglycate, TNFR1 gene expression decreased. Based on the results obtained, it was suggested that mast cells and neurons of the intramural ganglion have a rather pronounced effect on TNFR1 gene expression.
Keywords
TNFR1, mast cells, intramural ganglion, sodium cromoglycate, ovalbumin-induced asthma, tumour necrosis factor-α
References
- Ahmad S., Azid N.A., Boer J.C., Lim J., Chen X., Plebanski M., Mohamud R. The Key Role of TNF-TNFR2 Interactions in the Modulation of Allergic Inflammation: A Review. Front. Immunol., 2018, vol. 9. Art. no. 2572. https://doi.org/10.3389/fimmu.2018.02572
- Bystrom J., Clanchy F.I., Taher T.E., Mangat P., Jawad A.S., Williams R.O., Mageed R.A. TNF-α in the Regulation of Treg and Th17 Cells in Rheumatoid Arthritis and Other Autoimmune Inflammatory Diseases. Cytokine, 2018, vol. 101, pp. 4–13. https://doi.org/10.1016/j.cyto.2016.09.001
- Probert L. TNF and Its Receptors in the CNS: The Essential, the Desirable and the Deleterious Effects. Neuroscience, 2015, vol. 302, pp. 2–22. https://doi.org/10.1016/j.neuroscience.2015.06.038
- Pasparakis M., Vandenabeele P. Necroptosis and Its Role in Inflammation. Nature, 2015, vol. 517, pp. 311–320. https://doi.org/10.1038/nature14191
- Kleinbongard P., Schulz R., Heusch G. TNF-α in Myocardial Ischemia/Reperfusion, Remodeling and Heart Failure. Heart Fail. Rev., 2011, vol. 16, no. 1, pp. 49–69. https://doi.org/10.1007/s10741-010-9180-8
- Niessen N.M., Gibson P.G., Simpson J.L., Scott H.A., Baines K.J., Fricker M. Airway Monocyte Modulation Relates to Tumour Necrosis Factor Dysregulation in Neutrophilic Asthma. ERJ Open Res., 2021, vol. 7, no. 3, pp. 00131–02021. https://doi.org/10.1183/23120541.00131-2021
- Alshevskaya A., Zhukova J., Kireev F., Lopatnikova J., Evsegneeva I., Demina D., Nepomniashchikch V., Gladkikh V., Karaulov A., Sennikov S. Redistribution of TNF Receptor 1 and 2 Expression on Immune Cells in Patients with Bronchial Asthma. Cells, 2022, vol. 11, no. 11. Art. no. 1736. https://doi.org/10.3390/cells11111736
- Berry M.A., Hargadon B., Shelley M., Parker D., Shaw D.E., Green R.H., Bradding P., Brightling C.E., Wardlaw A.J., Pavord I.D. Evidence of a Role of Tumor Necrosis Factor α in Refractory Asthma. N. Engl. J. Med., 2006, vol. 354, no. 7, pp. 697–708. https://doi.org/10.1056/nejmoa050580
- Whitehead G.S., Thomas S.Y., Shalaby K.H., Nakano K., Moran T.P., Ward J.M., Flake G.P., Nakano H., Cook D.N. TNF Is Required for TLR Ligand-Mediated but Not Protease-Mediated Allergic Airway Inflammation. J. Clin. Invest., 2017, vol. 127, no. 9, pp. 3313–3326. https://doi.org/10.1172/jci90890
- Proudfoot A., Bayliffe A., O’Kane C.M., Wright T., Serone A., Bareille P.J., Brown V., Hamid U.I., Chen Y., Wilson R., Cordy J., Morley P., de Wildt R., Elborn S., Hind M., Chilvers E.R., Griffiths M., Summers C., McAuley D.F. Novel Anti-Tumour Necrosis Factor Receptor-1 (TNFR1) Domain Antibody Prevents Pulmonary Inflammation in Experimental Acute Lung Injury. Thorax, 2018, vol. 73, no. 8, pp. 723–730. https://doi.org/10.1136/thoraxjnl-2017-210305
- Kucher A.N. Neurogenic Inflammation: Biochemical Markers, Genetic Control and Diseases. Bull. Sib. Med., 2020, vol. 19, no. 2, pp. 171–181. https://doi.org/10.20538/1682-0363-2020-2-171-181
- Chiang C.H. Distribution of Ganglion Neurons in the Trachea of the Rat. Kaibogaku Zasshi, 1993, vol. 68, no. 6, pp. 607–616.
- Close B., Banister K., Baumans V., Bernoth E.M., Bromage N., Bunyan J., Erhardt W., Flecknell P., Gregory N., Hackbarth H., Morton D., Warwick C. Recommendations for Euthanasia of Experimental Animals: Part 2. Lab. Anim., 1997, vol. 31, no. 1, pp. 1–32. https://doi.org/10.1258/002367797780600297
- Yamaguchi M., Shibata O., Nishioka K., Makita T., Sumikawa K. Propofol Attenuates Ovalbumin-Induced Smooth Muscle Contraction of the Sensitized Rat Trachea: Inhibition of Serotonergic and Cholinergic Signaling. Anesth. Analg., 2006, vol. 103, no. 3, pp. 594–600. https://doi.org/10.1213/01.ane.0000229853.01875.60
- Yilmaz A., Onen H., Alp E., Menevse S. Real-Time PCR for Gene Expression Analysis. Hernandez-Rodriguez P., Ramirez Gomez A.P. (eds.). Polymerase Chain Reaction. Intech, 2012, pp. 229–254.
- Masuda N., Mantani Y., Yoshitomi C., Yuasa H., Nishida M., Aral M., Kawano J., Yokoyama T., Hoshi N., Kitagawa H. Immunohistochemical Study on the Secretory Host Defense System with Lysozyme and Secretory Phospholipase A2 Throughout Rat Respiratory Tract. J. Vet. Med. Sci., 2018, vol. 80, no. 2, pp. 323–332. https://doi.org/10.1292/jvms.17-0503
- Papazian I., Tsoukala E., Boutou A., Karamita M., Kambas K., Iliopoulou L., Fischer R., Kontermann R.E., Denis M.C., Kollias G., Lassmann H., Probert L. Fundamentally Different Roles of Neuronal TNF Receptors in CNS Pathology: TNFR1 and IKKβ Promote Microglial Responses and Tissue Injury in Demyelination While TNFR2 Protects Against Excitotoxicity in Mice. J. Neuroinflammation, 2021, vol. 18, no. 1. Art. no. 222. https://doi.org/10.1186/s12974-021-02200-4
- Kumar S., Joos G., Boon L., Tournoy K., Provoost S., Maes T. Role of Tumor Necrosis Factor-α and Its Receptors in Diesel Exhaust Particle-Induced Pulmonary Inflammation. Sci. Rep., 2017, vol. 7, no. 1. Art. no. 11508. https://doi.org/10.1038/s41598-017-11991-7
|
Make a Submission
Vestnik of NArFU.
Series "Humanitarian and Social Sciences"
Forest Journal
Arctic and North
|