CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Seaweed as an Important Functional Ingredient and Alimentary Raw Material for Enriching the Diet of the Population in the Arctic Zone of the Russian Federation (Review). C. 99-113

Версия для печати

Section: Review articles

Download (pdf, 0.5MB )

UDC

[613.292+582.26](98)

DOI

10.37482/2687-1491-Z180

Authors

Ol’ga A. Shepeleva* ORCID: https://orcid.org/0000-0002-7973-9320
Galina N. Degteva* ORCID: https://orcid.org/0000-0002-3269-2588
Irina I. Novikova** ORCID: https://orcid.org/0000-0003-1105-471X
Irina G. Shevkun*** ORCID: https://orcid.org/0000-0002-1796-360X
Sergey P. Romanenko** ORCID: https://orcid.org/0000-0003-1375-0647
Мariya V. Semenikhina** ORCID: https://orcid.org/0000-0001-8405-4847
Ol’ga N. Popova* ORCID: https://orcid.org/0000-0002-0135-4594
Andrey B. Gudkov* ORCID: https://orcid.org/0000-0001-5923-0941

*Northern State Medical University
(Arkhangelsk, Russian Federation)
**Novosibirsk Research Institute of Hygiene
(Novosibirsk, Russian Federation)
***Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing
(Moscow, Russian Federation)

Corresponding author: Ol’ga Shepeleva, address: prosp. Troitskiy 51, Arkhangelsk, 163000, Russian Federation; e-mail: shepelevaoangmu@mail.ru

Abstract

The paper analysed scientific literature on seaweed as an additional source of nutrients and biologically active compounds. The studies demonstratе that brown algae are promising raw materials for human nutrition. Algae contain 7 amino acids essential for adults, as well as monoiodotyrosine and diiodotyrosine, which induce a hormone-like effect of algae proteins on the human body. Brown algae fats are represented by both saturated and unsaturated fatty acids, which allows us to assume that algae can become an alternative source of essential long-chain polyunsaturated fatty acids, having a positive effect on the cardiovascular and nervous systems, as well as on the cognitive development of children. It should be emphasized that brown algae are a source of fucosterol, which has hypocholesterolemic, hypotensive, antioxidant, anti-inflammatory, antitumour and antidiabetic effects. Algae carbohydrates include polysaccharides unique in their chemical structure and biological activity: alginates, having anti-inflammatory, antioxidant and immunomodulatory properties; fucoidans, producing antibacterial, antioxidant and antitumour effects; and laminarins, exerting immunomodulatory, antioxidant, antitumour and antibacterial effects. Polyphenols contained in algae are not found in terrestrial plants. Algae are a source of iodine and other minerals as well as vitamins. Currently, algae are being used in human diets in a number of countries. However, there are certain problems that require further research, such as the possible side-effects of excessive consumption of seaweed, its daily intake recommendations, and bioavailability of nutrients after seaweed handling and processing. In general, it can be concluded that seaweed may well become an important functional ingredient and alimentary raw material for enriching the diet of the population in the Arctic zone of the Russian Federation.

Keywords

seaweed, Laminaria digitata, Laminaria saccharina, Fucus vesiculosus, Ascophyllum nodosum, functional foods, diet of residents of the Russian Arctic

References

  1. Zhang L., Liao W., Huang Y., Chu Y., Zhao C. Global Seaweed Farming and Processing in the Past 20 Years. Food Prod. Process. Nutr., 2022, vol. 4. Art. no. 23. https://doi.org/10.1186/s43014-022-00103-2
  2. Bae H., Song G., Lee J.-Y., Hong T., Chang M.-J., Lim W. Laminarin-Derived from Brown Algae Suppresses the Growth of Ovarian Cancer Cells via Mitochondrial Dysfunction and ER Stress. Mar. Drugs, 2020, vol. 18, no. 3. Art. no. 152. https://doi.org/10.3390/md18030152
  3. Feng W., Hu Y., An N., Feng Z., Liu J., Mou J., Hu T., Guan H., Zhang D., Mao Y. Alginate Oligosaccharide Alleviates Monocrotaline-Induced Pulmonary Hypertension via Anti-Oxidant and Anti-Inflammation Pathways in Rats. Int. Heart J., 2020, vol. 61, no. 1, pp. 160–168. https://doi.org/10.1536/ihj.19-096
  4. Wang M., Chen L., Zhang Z. Potential Applications of Alginate Oligosaccharides for Biomedicine – а Mini Review. Carbohydr. Polym., 2021, vol. 271. Art. no. 118408. https://doi.org/10.1016/j.carbpol.2021.118408
  5. Li Y., Huang J., Zhang S., Yang F., Zhou H., Song Y., Wang B., Li H. Sodium Alginate and Galactooligosaccharides Ameliorate Metabolic Disorders and Alter the Composition of the Gut Microbiota in Mice with High-Fat Diet-Induced Obesity. Int. J. Biol. Macromol., 2022, vol. 215, pp. 113–122. https://doi.org/10.1016/j.ijbiomac.2022.06.073
  6. Ogudov A.S., Shepeleva O.A., Chuenko N.F., Shestakov N.A., Shevkun I.G., Novikova I.I. Evaluation of the Biological Effect of the Brown Algae Laminaria digitata (Based on Studies on Experimental Animals). Sci. Educ. Today, 2022, vol. 12, no. 6, pp. 189–211 (in Russ.). https://doi.org/10.15293/2658-6762.2206.08
  7. Janapatla R.P., Dudek A., Chen C.L., Chuang C.H., Chien K.Y., Feng Y., Yeh Y.M., Wang Y.H., Chang H.J., Lee Y.C., Chiu C.H. Marine Prebiotics Mediate Decolonization of Pseudomonas aeruginosa from Gut by Inhibiting Secreted Virulence Factor Interactions with Mucins and Enriching Bacteroides Population. J. Biomed. Sci., 2023, vol. 30, no. 1. Art. no. 9. https://doi.org/10.1186/s12929-023-00902-w
  8. Iso H., Kubota Y. Nutrition and Disease in the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC). Asian Pac. J. Cancer Prev., 2007, vol. 8, suppl., pp. 35–80.
  9. Park G.-H., Cho J.-H., Lee D., Kim Y. Association Between Seafood Intake and Cardiovascular Disease in South Korean Adults: A Community-Based Prospective Cohort Study. Nutrients, 2022, vol. 14, no. 22. Art. no. 4864. https://doi.org/10.3390/nu14224864
  10. Ren Y., Feng Y., Qing J., Zhang P., Xiao L., Liang X. The Correlation Between Nuts and Algae-Less Diet and Children’s Blood Pressure: From a Cross-Sectional Study in Chongqing. Clin. Exp. Hypertens., 2023, vol. 45, no. 1. Art. no. 2180024. https://doi.org/10.1080/10641963.2023.2180024
  11. Kishida R., Yamagishi K., Muraki I., Sata M., Tamakoshi A., Iso H. Frequency of Seaweed Intake and Its Association with Cardiovascular Disease Mortality: The JACC Study. J. Atheroscler. Thromb., 2020, vol. 27, no. 12, pp. 1340–1347. https://doi.org/10.5551/jat.53447
  12. Minami Y., Kanemura S., Oikawa T., Suzuki S., Hasegawa Y., Nishino Y., Fujiya T., Miura K. Associations of Japanese Food Intake with Survival of Stomach and Colorectal Cancer: A Prospective Patient Cohort Study. Cancer Sci., 2020, vol. 111, no. 7, pp. 2558–2569. http://dx.doi.org/10.1111/cas.14459
  13. Zaporozhets T.S., Kuznetsova T.A., Kryzhanovskiy S.P., Ermakova S.P., Besednova N.N. Funktsional’nye pishchevye produkty na osnove polisakharidov iz morskikh vodorosley [Functional Foods Based on Seaweed Polysaccharides]. Vladivostok, 2020. 368 p.
  14. Vorob’eva N.Yu. Myasnye kombinirovannye produkty dlya dieticheskogo profilakticheskogo pitaniya s ispol’zovaniem produktov pererabotki morskikh vodorosley [Combined Meat Products for Preventive Dietary Nutrition Using Seaweed Processing Products]. Novye kontseptual’nye podkhody k resheniyu global’noy problemy obespecheniya prodovol’stvennoy bezopasnosti v sovremennykh usloviyakh [New Conceptual Approaches to Solving the Global Food Security Problem in Modern Conditions]. Kursk, 2022, pp. 77–80.
  15. Istomin A.V., Fedina I.N., Shkurikhina S.V., Kutakova N.S. Food and the North: Hygienic Problems of the Arctic Zone of Russia (the Review of the Literature). Gigiena i sanitariya, 2018, vol. 97, no. 6, pp. 557–563 (in Russ.). http://dx.doi.org/10.18821/0016-9900-2018-97-6-557-563
  16. Potolitsyna N.N., Boyko E.R. Vitamin Status in Residents of the European North of Russia and Its Correlation with Geographical Latitude. J. Med. Biol. Res., 2018, vol. 6, no. 4, pp. 376–386. https://doi.org/10.17238/issn2542-1298.2018.6.4.376
  17. Ryzhkova S.M., Kruchinina V.M. Trends in the Consumption of Fish and Fish Products in Russia. Proc. Voronezh State Univ. Eng. Technol., 2020, vol. 82, no. 2, pp. 181–189 (in Russ.). https://doi.org/10.20914/2310-1202-2020-2-181-189
  18. Nikanov A.N., Krivosheev Yu.K., Gudkov A.B. Vliyanie morskoy kapusty i napitka “Al’gapekt” na mineral’nyy sostav krovi u detey – zhiteley Monchegorska [Effect of Seaweed and the Algapekt Drink on the Blood Mineral Composition in Children Living in Monchegorsk]. Ekologiya cheloveka, 2004, no. 2, pp. 30–33.
  19. Kodentsova V.M., Vrzhesinskaya O.A., Risnik D.V., Nikityuk D.B., Tutelyan V.A. Micronutrient Status of Population of the Russian Federation and Possibility of Its Correction. State of the Problem. Probl. Nutr., 2017, vol. 86, no. 4, pp. 113–124 (in Russ.).
  20. Bogolitsin K.G., Parshina А.E., Druzhinina А.S., Shulgina E.V. Comparative Characteristics of the Chemical Composition of Some Representatives of Brown Algae of the White and Yellow Seas. Khimiya rastitel’nogo syr’ya, 2020, no. 3, pp. 35–46 (in Russ.). https://doi.org/10.14258/jcprm.2020037417
  21. Bogolitsyn K.G., Kaplitsin P.A., Dobrodeeva L.K., Druzhinina A.S., Ovchinnikov D.V., Parshina A.E., Shul’gina E.V. Zhirnokislotnyy sostav i biologicheskaya aktivnost’ sverkhkriticheskikh ekstraktov arkticheskoy buroy vodorosli Fucus vesiculosus [Fatty Acid Components and Biological Activity of Supercritical Extracts of Arctic Brown Algae Fucus vesiculosus]. Sverkhkriticheskie flyuidy: teoriya i praktika, 2016, vol. 11, no. 3, pp. 58–70.
  22. Shikh E.V., Makhova A.A. Long-Chain ω-3 Polyunsaturated Fatty Acids in the Prevention of Diseases in Adults and Children: A View of the Clinical Pharmacologist. Probl. Nutr., 2019, vol. 88, no. 2, pp. 91–100 (in Russ.).
  23. Innes J.K., Calder P.C. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. Int. J. Mol. Sci., 2020, vol. 21, no. 4. Art. no. 1362. https://doi.org/10.3390/ijms21041362
  24. Obluchinskaya E.D. Fitokhimicheskie i tekhnologicheskie issledovaniya vodorosley Barentseva morya [Phytochemicals and Technological Study of the Barents Sea Algae]. Trudy Kol’skogo nauchnogo tsentra RAN, 2020, vol. 11, no. 4-7, pp. 178–198. https://doi.org/10.37614/2307-5252.2020.11.4.008
  25. Besednova N.N., Zvyagintseva T.N., Andriukov B.G., Zaporozhets T.S., Kuznetsova T.A., Kryzhanovsky S.P., Guseva L.G., Shchelkanov M.Yu. Seaweed-Derived Sulfated Polysaccharides as Potential Agents for Prevention and Treatment of Influenza and COVID-19. Antibiot. Chemother., 2021, vol. 66, no. 7-8, pp. 50–66 (in Russ.). https://doi.org/10.37489/0235-2990-2021-66-7-8-50-66
  26. Song S., Peng H., Wang Q., Liu Z., Dong X., Wen C., Ai C., Zhang Y., Wang Z., Zhu B. Inhibitory Activities of Marine Sulfated Polysaccharides Against SARS-CoV-2. Food Funct., 2020, vol. 11, no. 9, pp. 7415–7420. https://doi.org/10.1039/d0fo02017f
  27. Jin J.-O., Yadav D., Madhwani K., Puranik N., Chavda V., Song M. Seaweeds in the Oncology Arena: Anti- Cancer Potential of Fucoidan as a Drug – а Review. Molecules, 2022, vol. 27, no. 18. Art. no. 6032. https://doi.org/10.3390/molecules27186032
  28. Besednova N.N., Zaporozhets T.S., Andryukov B.G., Kryzhanovsky S.P., Ermakova S.P., Kuznetsova T.A., Voronova A.N., Shchelkanov M.Y. Antiparasitic Effects of Sulfated Polysaccharides from Marine Hydrobionts. Mar. Drugs, 2021, vol. 19, no. 11. Art. no. 637. https://doi.org/10.3390/md19110637
  29. Kuznetsova T.A., Zaporozhets T.S., Besednova N.N., Zvyagintseva T.N., Shevchenko N.M., Imbs T.N., Mandrakova N.V., Mel’nikov V.G. Issledovanie prebioticheskogo potentsiala biologicheski aktivnykh veshchestv iz morskikh gidrobiontov i razrabotka novykh produktov funktsional’nogo pitaniya [Study of Prebiotic Potential of Biologically Active Substances from Sea Hydrobionts and Development of New Functional Food]. Vestnik Dal’nevostochnogo otdeleniya Rossiyskoy akademii nauk, 2011, no. 2, pp. 147–150.
  30. Odinets A.G., Tatarinova L.V. Fukoidan: sovremennye predstavleniya o ego roli v regulyatsii uglevodnogo obmena [Fucoidan: Modern Concepts of Its Role in Regulation of Carbohydrate Metabolism]. Lechebnoe delo: nauchnoprakticheskiy terapevticheskiy zhurnal, 2016, no. 3, pp. 40–44.
  31. Yin J., Wang J., Li F., Yang Z., Yang X., Sun W., Xia B., Li T., Song W., Guo S. The Fucoidan from the Brown Seaweed Ascophyllum nodosum Ameliorates Atherosclerosis in Apolipoprotein E-Deficient Mice. Food Funct., 2019, vol. 10, no. 8, pp. 5124–5139. https://doi.org/10.1039/C9FO00619B
  32. Kuznetsova T.A. Antikoagulyantnaya i antitromboticheskaya aktivnost’ sul’fatirovannykh polisakharidov morskikh vodorosley [Anticoagulant and Antithrombotic Activity of Seaweed Sulfated Polysaccharides]. Tromboz, gemostaz i reologiya, 2020, no. 2, pp. 53–59. https://doi.org/10.25555/THR.2020.2.0918
  33. Podkorytova A.V., Roshchina A.N. Morskie burye vodorosli – perspektivnyy istochnik BAV dlya meditsinskogo, farmatsevticheskogo i pishchevogo primeneniya [Marine Brown Algae – Perspective Source of BAS for Medical, Pharmaceutical and Food Use]. Trudy VNIRO, 2021, vol. 186, no. 4, pp. 156–172.
  34. Obluchinskaya E.D. Antioksidantnye kompleksnye ekstrakty iz fukusovykh vodorosley Barentseva morya [Antioxidant Complex Extracts from Fucus Algae of the Barents Sea]. Vestnik MGTU. Trudy Murmanskogo gosudarstvennogo tekhnicheskogo universiteta, 2018, vol. 21, no. 3, pp. 395–401. https://doi.org/10.21443/1560-9278-2018-21-3-395-401
  35. Bogolitsin K.G., Druzhinina A.S., Ovchinnikov D.V., Parshina A.E., Shulgina E.V., Turova P.N., Stavrianidi A.N. Polyphenols of Arctic Brown Algae: Extraction, Polymolecular Composition. Khimiya rastitel’nogo syr’ya, 2019, no. 4, pp. 65–75 (in Russ.). https://doi.org/10.14258/jcprm.2019045135
  36. Obluchinskaya E.D., Zakharova L.V. Comparative Study of Polyphenols of Brown Algae of the Barents Sea and the White Sea, as Well as the Waters of the North Atlantic. Khimiya rastitel’nogo syr’ya, 2020, no. 4, pp. 129–137 (in Russ.). https://doi.org/10.14258/jcprm.2020047755
  37. Imbs T.I., Zvyagintseva T.N. Phlorotannins Are Polyphenolic Metabolites of Brown Algae. Russ. J. Mar. Biol., 2018, vol. 44, no. 4, pp. 263–273. https://doi.org/10.1134/S106307401804003X
  38. Besednova N.N., Andryukov B.G., Zaporozhets T.S., Kuznetsova T.A., Kryzhanovsky S.P., Fedyanina L.N., Makarenkova I.D., Galkina I.V., Shchelkanov M.Yu. Polyphenols Sourced from Terrestrial and Marine Plants as Coronavirus Reproduction Inhibitors. Antibiot. Chemother., 2021, vol. 66, no. 3-4, pp. 62–81 (in Russ.). https://doi.org/10.37489/0235-2990-2021-66-3-4-62-81
  39. André R., Guedes L., Melo R., Ascensão L., Pacheco R., Vaz P.D., Serralheiro M.L. Effect of Food Preparations on in vitro Bioactivities and Chemical Components of Fucus vesiculosus. Foods, 2020, vol. 9, no. 7. Art. no. 955. https://doi.org/10.3390/foods9070955
  40. Zakharova L.V., Obluchinskaya E.D. Polifenoly i antioksidantnaya aktivnost’ ekstraktov fukusovykh vodorosley zaliva Faksafloui (more Irmingera) i bukhty Zavalishina (Barentsevo more) [Polyphenol and Antioxidant Activity of Focus Algae Extracts from Faksafloi Bay (Irminger Sea) and Zavalishin Bay (Barents Sea)]. Trudy Kol’skogo nauchnogo tsentra RAN, 2021, vol. 12, no. 3, pp. 68–75. https://doi.org/10.37614/2307-5252.2021.3.9.009
  41. Naumov I.A., Burkova E.A., Kanarskaya Z.A., Kanarskiy A.V. Vodorosli – istochnik biopolimerov, biologicheski aktivnykh veshchestv i substrat v biotekhnologii. Ch. 1. Biopolimery kletok tkaney vodorosley [Algae Are a Source of Biopolymers, Biologically Active Substances and a Substrate in Biotechnology. Pt. 1. Biopolymers of Algae Tissue Cells]. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2015, vol. 18, no. 1, pp. 184–188.
  42. Wells M.L., Potin P., Craigie J.S., Raven J.A., Merchant S.S., Helliwell K.E., Smith A.G., Camire M.E., Brawley S.H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol., 2017, vol. 29, no. 2, pp. 949–982. https://doi.org/10.1007/s10811-016-0974-5
  43. Bogolitsyn K.G., Kaplitsin P.A., Kashina E.M., Ivanchenko N.L., Kokryatskaya N.M., Ovchinnikov D.V. Osobennosti mineral’nogo sostava burykh vodorosley Belogo i Barentseva morey [Peculiarities of the Mineral Composition of the Brown Algae in the White and Barents Seas]. Khimiya rastitel’nogo syr’ya, 2014, no. 1, pp. 243– 250. http://dx.doi.org/10.14258/jcprm.1401243
  44. Küpper F.C., Carrano C.J. Key Aspects of the Iodine Metabolism in Brown Algae: A Brief Critical Review. Metallomics, 2019, vol. 11, no. 4, pp. 756–764. https://doi.org/10.1039/c8mt00327k
  45. Monteiro J.P., Rey F., Melo T., Moreira A.S.P., Arbona J.-F., Skjermo J., Forbord S., Funderud J., Raposo D., Kerrison P.D., Perrineau M.-M., Gachon C., Domingues P., Calado R., Domingues M.R. The Unique Lipidomic Signatures of Saccharina latissima Can Be Used to Pinpoint Their Geographic Origin. Biomolecules, 2020, vol. 10, no. 1. Art. no. 107. https://doi.org/10.3390/biom10010107
  46. Sahoo D., Seckbach J. (eds.). The Algae World. Dordrecht, 2015, pp. 403–428.
  47. Ścieszka S., Klewicka E. Algae in Food: A General Review. Crit. Rev. Food Sci. Nutr., 2019, vol. 59, no. 21, pp. 3538–3547. https://doi.org/10.1080/10408398.2018.1496319
  48. Vafina L.Kh. Obosnovanie kompleksnoy tekhnologii pererabotki burykh vodorosley (Phaeophyta) pri poluchenii funktsional’nykh pishchevykh produktov [Feasibility Study of the Integrated Technology for Brown Algae (Phaeophyta) Processing to Obtain Functional Foods: Diss.]. Moscow, 2010. 280 p.
  49. Shokina Y., Kuchina Y., Savkina K., Novozhilova E., Tatcienko K., Shokin G. The Use of Brown Algae Laminaria saccharina in Iodine Enriched Products Aimed at Preventing Iodine Deficiency. KnE Life Sci., 2022, vol. 7, no. 1, pp. 135–145. https://doi.org/10.18502/kls.v7i1.10115
  50. Potoroko I.Yu., Paimulina A.V., Uskova D.G., Kalinina I.V. Scientific and Practical Aspects of Functional Food Technology. Bull. South Ural State Univ. Ser. Food Biotechnol., 2018, vol. 6, no. 1, pp. 49–59 (in Russ.). https://doi.org/10.14529/food180106
  51. Kalenik T.K., Smertina E.S., Fedjanina L.N., Shevchenko N.M., Zvjagintseva T.N., Imbs T.I. Composition to Make Dough for Wheat Bread “Seafood”. Patent RU2399209C1, 2010. Available at: https://yandex.ru/patents/doc/RU2399209C1_20100920 (accessed: 4 January 2023) (in Russ.).
  52. Korovkina N.V., Kutakova N.A., Bogdanovich N.I. Ekstrakty burykh vodorosley dlya obogashcheniya ratsiona pitaniya prirodnymi mineral’nymi veshchestvami [Brown Algae Extracts for Enriching the Diet with Natural Minerals]. Khimiya rastitel’nogo syr’ya, 2008, no. 4, pp. 167–170.
  53. Naumov I.A., Burkova E.A., Kanarskaya Z.A., Kanarskiy A.V. Vodorosli – istochnik biopolimerov, biologicheski aktivnykh veshchestv i substrat v biotekhnologii. Ch. 2. Biotekhnologicheskaya pererabotka vodorosley [Algae Are a Source of Biopolymers, Biologically Active Substances and a Substrate in Biotechnology. Pt. 2. Biotechnological Processing of Algae]. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2015, vol. 18, no. 2, pp. 198–203.
  54. Klochkova T.A. Poluchenie al’ginatsoderzhashchego gelya iz kamchatskoy buroy laminarievoy vodorosli Eualaria fistulosa [Obtaining Alginate-Containing Gel from the Brown Kelp Seaweed Eualaria fistulosa from Kamchatka]. Vestnik Kamchatskogo gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 56, pp. 28–41. https://doi.org/10.17217/2079-0333-2021-56-28-41
  55. Podkorytova A.B., Vafina L.Kh., Murav’eva E.A., Sharina Z.N. Sanitarno-gigienicheskaya kharakteristika burykh vodorosley Belogo i Barentseva morey [Sanitary and Hygienic Characteristics of Brown Algae of the White and Barents Seas]. Rybprom: tekhnologii i oborudovanie dlya pererabotki vodnykh bioresursov, 2009, no. 4, pp. 33–39.
  56. Aminina N.M. Comparative Description of Brown Algae from the Coastal Zone of Far East. Izvestiya TINRO, 2015, vol. 182, pp. 258–268 (in Russ.).



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North