CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Effects of Radio Frequency Electromagnetic Fields on the Nervous System. In vitro Experiments (Review). C. 229-239

Версия для печати

Section: Review articles

UDC

[612.8+537.531]:57.042

DOI

10.37482/2687-1491-Z181

Authors

Natalia I. Khorseva* ORCID: https://orcid.org/0000-0002-3444-0050
Pavel E. Grigoriev**/*** ORCID: https://orcid.org/0000-0001-7390-9109

*Emanuel Institute of Biochemical Physics, Russian Academy of Sciences
(Moscow, Russia)
**Sevastopol State University
(Sevastopol, Russia)
***Sechenov Academic Research Institute of Physical Methods of Treatment, Medical Climatology and Rehabilitation
(Yalta, Republic of Crimea, Russia)

Corresponding author: Natalia Khorseva, address: ul. Kosygina 4, Moscow, 1119334, Russiа; e-mail: sheridan1957@mail.ru

Abstract

The effects of mobile communications on the population, primarily on children and adolescents as the cohort most vulnerable to any environmental factors, dictates the need for a thorough investigation into the impact of radio frequency electromagnetic fields (RF EMF) on the central nervous system (CNS) as the main target of their action. In this regard, the analysis of experimental data as an indirect assessment of possible negative changes in the body of young animals under the influence of RF EMF, including 5G and Wi-Fi, is highly relevant. We performed a systematization of experimental data, which will be presented in two parts: in vitro and in vivo experiments. This article introduces materials indicating both diversity of approaches to studying the effects of RF EMF on the central nervous system and difficulties of systematizing the results of the experiments. The analysis of literature data showed that, despite the numerous studies into the effects of RF EMF in vitro, CNS cell cultures are used rather rarely. However, this paper examines in detail the results of in vitro experiments: changes in the action potential, morphological changes in cells and the myelin sheath, and changes in the permeability of the blood–brain barrier (using cultures of only nerve cells). It was established that, despite some inconsistency in the results obtained, most studies indicate a negative effect of RF EMF on CNS cells. The morphological and histological changes in CNS structures under the influence of RF EMF will be presented in the next part of the review.

Keywords

radio frequency electromagnetic field, Wi-Fi, 5G, in vitro experiments, central nervous system, isolated cells of the nervous system, myelin sheath, blood–brain barrier
Download (pdf, 0.3MB )

References

  1. Khorseva N.I., Grigor’ev Yu.G., Grigor’ev P.E. Influence of Low-Intensity Electromagnetic Fields on the Organism’s Antenatal Development. Part 1. From Gametogenesis to Birth. J. Med. Biol. Res., 2017, vol. 5, no. 4, pp. 42–54. http://dx.doi.org/10.17238/issn2542-1298.2017.5.4.42
  2. Khorseva N.I., Grigor’ev Yu.G., Grigor’ev P.E. Influence of Low-Intensity Electromagnetic Fields on the Organism’s Antenatal Development. Part 2. Late Effects During the Postnatal Period (Review). J. Med. Biol. Res., 2018, vol. 6, no. 1, pp. 41–55. https://doi.org/10.17238/issn2542-1298.2018.6.1.41
  3. Grigor’ev Yu.G., Grigor’ev O.A. Sotovaya svyaz’ i zdorov’e: elektromagnitnaya obstanovka, radiobiologicheskie i gigienicheskie problemy, prognoz opasnosti [Cellular Communication and Health: Electromagnetic Environment, Radiobiology and Hygiene Problems, Forecast of Danger]. Moscow, 2013. 567 p.
  4. Grigor’ev Yu.G., Khorseva N.I. Mobil’naya svyaz’ i zdorov’e detey. Otsenka opasnosti primeneniya mobil’noy svyazi det’mi i podrostkami. Rekomendatsii detyam i roditelyam [Mobile Communications and Child Health. Risk Assessment of the Use of Mobile Communications by Children and Adolescents. Recommendations for Children and Their Parents]. Moscow, 2014. 230 p.
  5. Lai Y.-F., Wang H.-Y., Peng R.-Y. Establishment of Injury Models in Studies of Biological Effects Induced by Microwave Radiation. Mil. Med. Res., 2021, vol. 8, no. 1. Art. no. 12. https://doi.org/10.1186/s40779-021-00303-w
  6. Redmayne M., Johansson O. Could Myelin Damage from Radiofrequency Electromagnetic Field Exposure Help Explain the Functional Impairment Electrohypersensitivity? A Review of the Evidence. J. Toxicol. Environ. Health B Crit. Rev., 2014, vol. 17, no. 5, pp. 247–258. https://doi.org/10.1080/10937404.2014.923356
  7. Zhi W.-J., Wang L.-F., Hu X.-J. Recent Advances in the Effects of Microwave Radiation on Brains. Mil. Med. Res., 2017, vol. 4, no. 1. Art. no. 29. https://doi.org/10.1186/s40779-017-0139-0
  8. Narayanan S.N., Jetti R., Kesari K.K., Kumar R.S., Nayak S.B., Bhat P.G. Radiofrequency Electromagnetic Radiation-Induced Behavioral Changes and Their Possible Basis. Environ. Sci. Pollut. Res., 2019, vol. 26, no. 30, pp. 30693–30710. https://doi.org/10.1007/s11356-019-06278-5
  9. Kim J.H., Lee J.-K., Kim H.-G., Kim K.-B., Kim H.R. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomol. Ther., 2019, vol. 27, no. 3, pp. 265–275. https://doi.org/10.4062/biomolther.2018.152
  10. Romeo S., Zeni O., Scarfì M.R., Poeta L., Lioi M.B., Sannino A. Radiofrequency Electromagnetic Field Exposure and Apoptosis: A Scoping Review of in vitro Studies on Mammalian Cells. Int. J. Mol. Sci., 2022, vol. 23, no. 4. Art. no. 2322. https://doi.org/10.3390/ijms23042322
  11. Markov M., Grigoriev Yu.G. Wi-Fi Technology – an Uncontrolled Global Experiment on the Health of Mankind. Electromagn. Biol. Med., 2013, vol. 32, no. 2, pp. 200–208. https://doi.org/10.3109/15368378.2013.776430
  12. Grigoriev Yu.G., Samoylov A.S. 5G-standart sotovoy svyazi. Summarnaya radiobiologicheskaya otsenka opasnosti planetarnogo elektromagnitnogo oblucheniya naseleniya [5G Cellular Standards. Total Radiobiological Assessment of the Danger of Planetary Electromagnetic Radiation Exposure to the Population]. Moscow, 2021. 220 p.
  13. Karipidis K., Mate R., Urban D., Tinker R., Wood A. 5G Mobile Networks and Health – a State-of-the-Science Review of the Research into Low-Level RF Fields Above 6 GHz. J. Expo. Sci. Environ. Epidemiol., 2021, vol. 31, no. 4, pp. 585–605. https://doi.org/10.1038/s41370-021-00297-6
  14. Nyberg N.R., McCredden J.E., Weller S.G., Hardell L. The European Union Prioritises Economics over Health in the Rollout of Radiofrequency Technologies. Rev. Environ. Health, 2022, vol. 39, no. 1, pp. 47–64. https://doi.org/10.1515/reveh-2022-0106
  15. Hu C., Zuo H., Li Y. Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain. Front. Public Health, 2021, vol. 9. Art. no. 691880. https://doi.org/10.3389/fpubh.2021.691880
  16. Sienkiewicz Z., van Rongen E. Can Low-Level Exposure to Radiofrequency Fields Effect Cognitive Behaviour in Laboratory Animals? A Systematic Review of the Literature Related to Spatial Learning and Place Memory. Int. J. Environ. Res. Public Health, 2019, vol. 16, no. 9. Art. no. 1607. https://doi.org/10.3390/ijerph16091607
  17. Ning W., Xu S.-J., Chiang H., Xu Z.-P., Zhou S.-Y., Yang W., Luo J.-H. Effects of GSM 1800 MHz on Dendritic Development of Cultured Hippocampal Neurons. Acta Pharmacol. Sin., 2007, vol. 28, no. 12, pp. 1873–1880. https://doi.org/10.1111/j.1745-7254.2007.00668.x
  18. Li Y., Deng P., Chen C., Ma Q., Pi H., He M., Lu Y., Gao P., Zhou C., He Z., Zhang Y., Yu Z., Zhang L. 1,800 MHz Radiofrequency Electromagnetic Irradiation Impairs Neurite Outgrowth with a Decrease in Rap1-GTP in Primary Mouse Hippocampal Neurons and Neuro2a Cells. Front. Public Health, 2021, vol. 9. Art. no. 771508. https://doi.org/10.3389/fpubh.2021.771508
  19. Echchgadda I., Cantu J.C., Tolstykh G.P., Butterworth J.W., Payne J.A., Ibey B.L. Changes in the Excitability of Primary Hippocampal Neurons Following Exposure to 3.0 GHz Radiofrequency Electromagnetic Fields. Sci. Rep., 2022, vol. 12. Art. no. 3506. https://doi.org/10.1038/s41598-022-06914-0
  20. Kim J.H., Chung K.H., Hwang Y.R., Park H.R., Kim H.J., Kim H.-G., Kim H.R. Exposure to RF-EMF Alters Postsynaptic Structure and Hinders Neurite Outgrowth in Developing Hippocampal Neurons of Early Postnatal Mice. Int. J. Mol. Sci., 2021, vol. 22, no. 10. Art. no. 5340. https://doi.org/10.3390/ijms22105340
  21. Chen C., Ma Q., Liu C., Deng P., Zhu G., Zhang L., He M., Lu Y., Duan W., Pei L., Li M., Yu Z., Zhou Z. Exposure to 1800 MHz Radiofrequency Radiation Impairs Neurite Outgrowth of Embryonic Neural Stem Cells. Sci. Rep., 2014, vol. 4. Art. no. 5103. https://doi.org/10.1038/srep05103
  22. Chen C., Ma Q., Deng P., Lin M., Gao P., He M., Lu Y., Pi H., He Z., Zhou C., Zhang Y., Yu Z., Zhang L. 1800 MHz Radiofrequency Electromagnetic Field Impairs Neurite Outgrowth Through Inhibiting EPHA5 Signaling. Front. Cell Dev. Biol., 2021, vol. 9. Art. no. 657623. https://doi.org/10.3389/fcell.2021.657623
  23. Su L., Yimaer A., Xu Z., Chen G. Effects of 1800 MHz RF-EMF Exposure on DNA Damage and Cellular Functions in Primary Cultured Neurogenic Cells. Int. J. Radiat. Biol., 2018, vol. 94, no. 3, pp. 295–305. https://doi.org/10.1080/09553002.2018.1432913
  24. Eghlidospour M., Ghanbari A., Mortazavi S.M.J., Azari H. Effects of Radiofrequency Exposure Emitted from a GSM Mobile Phone on Proliferation, Differentiation, and Apoptosis of Neural Stem Cells. Anat. Cell Biol., 2017, vol. 50, no. 2, pp. 115–123. https://doi.org/10.5115/acb.2017.50.2.115
  25. El Khoueiry C., Moretti D., Renom R., Camera F., Orlacchio R., Garenne A., Poulletier De Gannes F., Poque-Haro E., Lagroye I., Veyret B., Lewis N. Decreased Spontaneous Electrical Activity in Neuronal Networks Exposed to Radiofrequency 1,800 MHz Signals. J. Neurophysiol., 2018, vol. 120, no. 6, pp. 2719–2729. https://doi.org/10.1152/jn.00589.2017
  26. Romanenko S., Siegel P.H., Wagenaar D.A., Pikov V. Effects of Millimeter Wave Irradiation and Equivalent Thermal Heating on the Activity of Individual Neurons in the Leech Ganglion. J. Neurophysiol., 2014, vol. 112, no. 10, pp. 2423–2431. https://doi.org/10.1152/jn.00357.2014
  27. Romanenko S., Harvey A.R., Hool L., Fan S., Wallace V.P. Millimeter Wave Radiation Activates Leech Nociceptors via TRPV1-Like Receptor Sensitization. Biophys. J., 2019, vol. 116, no. 12, pp. 2331–2345. https://doi.org/10.1016/j.bpj.2019.04.021
  28. Wang L.-F., Li X., Gao Y.-B., Wang S.-M., Zhao L., Dong J., Yao B.-W., Xu X.-P., Chang G.-M., Zhou H.-M., Hu X.-J., Peng R.-Y. Activation of VEGF/Flk-1-ERK Pathway Induced Blood–Brain Barrier Injury After Microwave Exposure. Mol. Neurobiol., 2015, vol. 52, no. 1, pp. 478–491. https://doi.org/10.1007/s12035-014-8848-9
  29. Pikov V., Arakaki X., Harrington M., Fraser S.E., Siegel P.H. Modulation of Neuronal Activity and Plasma Membrane Properties with Low-Power Millimeter Waves in Organotypic Cortical Slices. J. Neural Eng., 2010, vol. 7, no. 4. Art. no. 045003. https://doi.org/10.1088/1741-2560/7/4/045003
  30. Huang M., Liang C., Li S., Zhang J., Guo D., Zhao B., Liu Y., Peng Y., Xu J., Liu W., Guo G., Shi L. Two Autism/ Dyslexia Linked Variations of DOCK4 Disrupt the Gene Function on Rac1/Rap1 Activation, Neurite Outgrowth, and Synapse Development. Front. Cell. Neurosci., 2020, vol. 13. Art. no. 577. https://doi.org/10.3389/fncel.2019.00577
  31. Fominova U.N., Gurina O.I., Shepeleva I.I., Popova T.N., Kekelidze Z.I., Chekhonin V.P. Neyrotroficheskiy faktor golovnogo mozga: struktura i vzaimodeystvie s retseptorami [Brain-Derived Neurotrophic Factor: Structure and Interaction with Receptors]. Rossiyskiy psikhiatricheskiy zhurnal, 2018, no. 4, pp. 64–72.
  32. Sutormina N.V. Brain-Derived Neurotrophic Factor and Physical Activity: A Review. Compr. Child Stud., 2022, vol. 4, no. 2, pp. 124–133. https://doi.org/10.33910/2687-0223-2022-4-2-124-133
  33. İkinci A., Mercantepe T., Unal D., Erol H.S., Şahin A., Aslan A., Baş O., Erdem H., Sönmez O.F., Kaya H., Odacı E. Morphological and Antioxidant Impairments in the Spinal Cord of Male Offspring Rats Following Exposure to a Continuous 900 MHz Electromagnetic Field During Early and Mid-Adolescence. J. Chem. Neuroanat., 2016, vol. 75, pt. B, pp. 99–104. https://doi.org/10.1016/j.jchemneu.2015.11.006
  34. Kim J.H., Yu D.-H., Huh Y.H., Lee E.H., Kim H.-G., Kim H.R. Long-Term Exposure to 835 MHz RF-EMF Induces Hyperactivity, Autophagy and Demyelination in the Cortical Neurons of Mice. Sci. Rep., 2017, vol. 7. Art. no. 41129. https://doi.org/10.1038/srep41129
  35. Sharma A., Sharma S., Shrivastava S., Singhal P.K., Shukla S. Mobile Phone Induced Cognitive and Neurochemical Consequences. J. Chem. Neuroanat., 2019, vol. 102. Art. no. 101684. https://doi.org/10.1016/j.jchemneu.2019.101684
  36. Sharma A., Shrivastava S., Singh A., Gupte S.S., Rathour A., Reshi M.S., Shukla S. Evidences of the Radiofrequency Exposure on the Antioxidant Status, Potentialy Contributing to the Inflammatory Response and Demyelination in Rat Brain. Environ. Toxicol. Pharmacol., 2022, vol. 94. Art. no. 103903. https://doi.org/10.1016/j.etap.2022.103903
  37. Tang J., Zhang Y., Yang L., Chen Q., Tan L., Zuo S., Feng H., Chen Z., Zhu G. Exposure to 900 MHz Electromagnetic Fields Activates the mkp-1/ERK Pathway and Causes Blood-Brain Barrier Damage and Cognitive Impairment in Rats. Brain Res., 2015, vol. 1601. Art. no. 92–101. https://doi.org/10.1016/j.brainres.2015.01.019
  38. Finnie J.W., Blumbergs P.C., Manavis J., Utteridge T.D., Gebski V., Davies R.A., Vernon-Roberts B., Kuchel T.R. Effect of Long-Term Mobile Communication Microwave Exposure on Vascular Permeability in Mouse Brain. Pathology, 2002, vol. 34, no. 4, pp. 344–347. https://doi.org/10.1080/003130202760120517
  39. Kuribayashi M., Wang J., Fujiwara O., Doi Y., Nabae K., Tamano S., Ogiso T., Asamoto M., Shirai T. Lack of Effects of 1439 MHz Electromagnetic Near Field Exposure on the Blood–Brain Barrier in Immature and Young Rats. Bioelectromagnetics, 2005, vol. 26, no. 7, pp. 578–588. https://doi.org/10.1002/bem.20138
  40. Schirmacher A., Winters S., Fischer S., Goeke J., Galla H.J., Kullnick U., Ringelstein E.B., Stögbauer F. Electromagnetic Fields (1.8 GHz) Increase the Permeability to Sucrose of the Blood–Brain Barrier in vitro. Bioelectromagnetics, 2000, vol. 21, no. 5, pp. 338–345.



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North