CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Beta-Casein of Cow’s Milk and Its Effects on the Human Body (Review). P. 411–418

Версия для печати

Section: Review articles

UDC

612.39

DOI

10.37482/2687-1491-Z207

Authors

Mikhail N. Pankov* ORCID: https://orcid.org/0000-0003-3293-5751
Viktoriya S. Smolina* ORCID: https://orcid.org/0000-0001-5871-2690
Aleksandra O. Stupina** ORCID: https://orcid.org/0000-0001-7664-3684
Inga A. Klassen** ORCID: https://orcid.org/0000-0002-4421-6087
Evgeniy A. Spasskiy** ORCID: https://orcid.org/0009-0008-3442-6735
*Northern State Medical University (Arkhangelsk, Russia)
**N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences (Arkhangelsk, Russia)

Corresponding author: Inga Klassen, address: pos. Lugovoy 10, Primorskiy munitsipal’nyy okrug, 163032, Arkhangelskaya obl., Russia; e-mail: labinnovrazv@yandex.ru

Abstract

Cow’s milk is an important food product for humans since it has a complex chemical composition and high nutritional value. Over 140 fatty acids, including linoleic, linolenic and arachidonic acids, were found in milk’s lipid profile. Milk is rich in minerals and contains almost all fat-soluble and water-soluble vitamins. Milk proteins are a complete source of all essential amino acids for humans. Approximately 78 % of the total amount of protein in milk is casein. Beta-casein is one of the most important proteins in cow’s milk, accounting for up to 35 % of all milk proteins. It is believed that the A2A2 allele of the β-casein gene allows animals to produce а more nutritionally valuable milk since in this case, during the cleavage of β-casein in the human gastrointestinal tract, β-casomorphin-7 is either not produced or is produced in much smaller (trace) amounts than in the case of the А1А1 allele, which makes the process of milk digestion more physiological. Research has shown a link between β-casomorphin-7 and a variety of negative effects that occur both directly in the gastrointestinal tract and throughout the human body, contributing to the development of numerous pathologies, in particular type 1 diabetes mellitus, cardiac diseases, and various neurological disorders. A comprehensive study involving preschool children demonstrated that replacing regular milk with milk containing only A2А2 β-casein led to a significant reduction in complications associated with gastrointestinal intolerance as well as to improved cognitive functions.

Keywords

β-casomorphin-7, β-casein, A1 allele, A2 allele, peptide, cow’s milk, β-casein gene, lactose intolerance
Download (pdf, 0.4MB )

References

1. Ganieva E.S., Kanareykina S.G., Khabirova F.A., Kanareykin V.I. Sravnitel’nyy analiz biologicheskoy i pishchevoy tsennosti moloka raznykh sel’skokhozyaystvennykh zhivotnykh [Comparative Analysis of the Biological and Nutritional Value of Milk from Different Farm Animals]. Vestnik Bashkirskogo gosudarstvennogo agrarnogo universiteta, 2021, no. 1, pp. 49–55. https://doi.org/10.31563/1684-7628-2021-57-1-49-55
2. Appalonova I.V., Smirnova E.A., Nikonorova N.P. Issledovanie zhirnokislotnogo sostava lipidov moloka [Study of Fatty Acid Composition of Milk Lipids]. Pishchevaya promyshlennost’, 2012, no. 11, pp. 72–75.
3. Babenko I.A., Shumilova N.E. Vliyanie vitaminov B1 i D na kachestvo i pishchevuyu tsennost’ detskogo sterilizovannogo moloka [Effect of Vitamins B1 and D on the Quality and Nutritional Value of Sterilized Infant Milk]. Sovremennye aspekty proizvodstva i pererabotki sel’skokhozyaystvennoy produktsii [Modern Aspects of Production and Processing of Agricultural Products]. Krasnodar, 2018, pp. 4–10.
4. Rangel A.H.N., Zaros L.G., Lima T.C., Borba L.H.F., Novaes L.P., Mota L.F.M., Silva M.S. Polymorphism in the Beta Casein Gene and Analysis of Milk Characteristics in Gir and Guzerà Dairy Cattle. Genet. Mol. Res., 2017, vol. 16, no. 2. https://doi.org/10.4238/gmr16029592
5. Khitsenko A.V., Rogozinnikova I.V. Ispol’zovanie molochnykh belkov v pishchevoy promyshlennosti [Use of Milk Proteins in Food Industry, Analysis of Its Functional Structure]. Molodezh’ i nauka, 2019, no. 3, p. 96.
6. Bhat M.Y., Dar T.A., Singh L.R. Casein Proteins: Structural and Functional Aspects. Gigli I. (ed.). Milk Proteins – From Structure to Biological Properties and Health Aspects. Rijeka, 2016, pp. 3–18. https://doi.org/10.5772/64187
7. Rocha-Mendoza D., Jiménez-Flores R. Casein Nomenclature, Structure, and Association. McSweeney P.L.H., McNamara J.P. (eds.). Encyclopedia of Dairy Sciences. Amsterdam, 2022, pp. 870–880. https://doi.org/10.1016/B978-0-12-818766-1.00277-4
8. Cattaneo S., Masotti F., Stuknytė M., De Noni I. Impact of in vitro Static Digestion Method on the Release of β-Casomorphin-7 from Bovine Milk and Cheeses with A1 or A2 β-Casein Phenotypes. Food Chem., 2023, vol. 404, pt. A. Art. no. 134617. https://doi.org/10.1016/j.foodchem.2022.134617
9. de Vitte K., Kerziene S., Klementavičiūtė J., de Vitte M., Mišeikienė R., Kudlinskienė I., Čepaitė J., Dilbiene V., Stankevičius R. Relationship of β-Casein Genotypes (A1A1, A1A2 and A2A2) to the Physicochemical Composition and Sensory Characteristics of Cows’ Milk. J. Appl. Anim. Res., 2022, vol. 50, no. 1, pp. 161–166. https://doi.org/10.1080/09712119.2022.2046005
10. Cieślińska A., Fiedorowicz E., Rozmus D., Sienkiewicz-Szłapka E., Jarmołowska B., Kamiński S. Does a Little Difference Make a Big Difference? Bovine β-Casein A1 and A2 Variants and Human Health – an Update. Int. J. Mol. Sci., 2022, vol. 23, no. 24. Art. no. 15637. https://doi.org/10.3390/ijms232415637
11. Asledottir T., Le T.T., Poulsen N.A., Devold T.G., Larsen L.B., Vegarud G.E. Release of β-Casomorphin-7 from Bovine Milk of Different β-Casein Variants After ex vivo Gastrointestinal Digestion. Int. Dairy J., 2018, vol. 81, pp. 8–11. http://dx.doi.org/10.1016/j.idairyj.2017.12.014
12. Bielecka M., Cichosz G., Czeczot H. Antioxidant, Antimicrobial and Anticarcinogenic Activities of Bovine Milk Proteins and Their Hydrolysates – a Review. Int. Dairy J., 2022, vol. 127. Art. no. 105208. https://doi.org/10.1016/j.idairyj.2021.105208
13. Henschen A., Lottspeich F., Brantl V., Teschemacher H. Novel Opioid Peptides Derived from Casein (BetaCasomorphins). II. Structure of Active Components from Bovine Casein Peptone. Hoppe Seylers Z. Physiol. Chem., 1979, vol. 360, no. 9, pp. 1217–1224.
14. Thiruvengadam M., Venkidasamy B., Thirupathi P., Chung I.-M., Subramanian U. β-Casomorphin: A Complete Health Perspective. Food Chem., 2021, vol. 337. Art. no. 127765. https://doi.org/10.1016/j.foodchem.2020.127765
15. Cattaneo S., Stuknytė M., Masotti F., De Noni I. Protein Breakdown and Release of β-Casomorphins During in vitro Gastro-Intestinal Digestion of Sterilised Model Systems of Liquid Infant Formula. Food Chem., 2017, vol. 217, pp. 476–482. https://doi.org/10.1016/j.foodchem.2016.08.128
16. Khavkin A.I., Vasia M.N., Novikova V.P. The Biological Role of Casomorphins (Part 2): Role in Human Pathology. Exp. Clin. Gastroenterol., 2021, no. 12, pp. 110–118 (in Russ.). https://doi.org/10.31146/1682-8658-ecg-196-12-110-118
17. Summer A., Di Frangia F., Ajmone Marsan P., De Noni I., Malacarne M. Occurrence, Biological Properties and Potential Effects on Human Health of β-Casomorphin 7: Current Knowledge and Concerns. Crit. Rev. Food Sci. Nutr., 2020, vol. 60, no. 21, pp. 3705–3723. https://doi.org/10.1080/10408398.2019.1707157
18. Taha A.M., Roshdy M.R., Mostafa H.A., Abdelazeem B. Ischemic Heart Disease in Africa: An Overnight Epidemiological Transition. Curr. Probl. Cardiol., 2024, vol. 49, no. 2. Art. no. 102337. https://doi.org/10.1016/j.cpcardiol.2023.102337
19. Sokolov O., Kost N., Andreeva O., Korneeva E., Meshavkin V., Tarakanova Y., Dadayan A., Zolotarev Y., Grachev S., Mikheeva I., Varlamov O., Zozulya A. Autistic Children Display Elevated Urine Levels of Bovine Casomorphin-7 Immunoreactivity. Peptides, 2014, vol. 56, pp. 68–71. https://doi.org/10.1016/j.peptides.2014.03.007
20. Krischer J.P., Lynch K.F., Schatz D.A., Ilonen J., Lernmark Å., Hagopian W.A., Rewers M.J., She J.X., Simell O.G., Toppari J., Ziegler A.G., Akolkar B., Bonifacio E. The 6 Year Incidence of Diabetes-Associated Autoantibodies in Genetically At-Risk Children: The TEDDY Study. Diabetologia, 2015, vol. 58, no. 5, pp. 980–987. https://doi.org/10.1007/s00125-015-3514-y
21. Chia J.S.J., McRae J.L., Kukuljan S., Woodford K., Elliott R.B., Swinburn B., Dwyer K.M. A1 Beta-Casein Milk Protein and Other Environmental Pre-Disposing Factors for Type 1 Diabetes. Nutr. Diabetes, 2017, vol. 7, no. 5.
Art. no. e274. https://doi.org/10.1038/nutd.2017.16
22. Tailford K.A., Berry C.L., Thomas A.C., Campbell J.H. A Casein Variant in Cow’s Milk Is Atherogenic. Atherosclerosis, 2003, vol. 170, no. 1, pp. 13–19. https://doi.org/10.1016/s0021-9150(03)00131-x
23. Chang W.H., Zheng A.J., Chen Z.M., Zhang S., Cai H.Y., Liu G.H. β-Casomorphin Increases Fat Deposition in Broiler Chickens by Modulating Expression of Lipid Metabolism Genes. Animal, 2019, vol. 13, no. 4, pp. 777–783. https://doi.org/10.1017/s1751731118002197
24. Sheng X., Li Z., Ni J., Yelland G. Effects of Conventional Milk versus Milk Containing Only A2 β-Casein on Digestion in Chinese Children: A Randomized Study. J. Pediatr. Gastroenterol. Nutr., 2019, vol. 69, no. 3, pp. 375–382. https://doi.org/10.1097/mpg.0000000000002437
25. Kuz’menko N.B., Kuzina A.N. Rol’ β-kazeina v pitanii detey pervykh let zhizni [Beta-Casein in Nutrition of Babies in the First Years]. Lechashchiy vrach, 2016, no. 1, pp. 16–19.



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
Лесной журнал 

Arctic and North