Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21 ABOUT JOURNAL
|
Section: Review articles Download (pdf, 0.5MB )UDC612.8:57.042DOI10.37482/2687-1491-Z195AuthorsNatalia I. Khorseva* ORCID: https://orcid.org/0000-0002-3444-0050Pavel E. Grigoriev** ORCID: https://orcid.org/0000-0001-7390-9109 *Emanuel Institute of Biochemical Physics, Russian Academy of Sciences (Moscow, Russia) **Sevastopol State University (Sevastopol, Russia) Corresponding author: Natalia Khorseva, address: ul. Kosygina 4, Moscow, 119334, Russia; e-mail: sheridan1957@mail.ru AbstractThis article is a continuation of a review whose first part analysed the works on the effect of radio frequency electromagnetic fields (RF EMF) on the central nervous system (CNS) in vitro (changes in the action potential, cell and myelin sheath morphology, as well as in the permeability of the blood–brain barrier (using cultures of nerve cells only); in addition, it presented various approaches to studying the effects of RF EMF and pointed out difficulties of systematizing the experimental data. The present article dwells on the morpho-histological changes in CNS structures under RF EMF exposure in young animals, since it allows us to give an indirect assessment of possible negative consequences of RF EMF exposure for children and adolescents as the cohort most vulnerable to any environmental factors. Morphological and histological changes in CNS structures (cerebral cortex, brainstem, cerebellum, auditory system, etc.) as well as changing electroencephalographic parameters were analysed. A bulk of data on the morphological and histological changes in the hippocampus was considered separately. In addition, the paper presents an analysis of changes in the biometric parameters of experimental animals under chronic exposure to RF EMF and its effect on cell viability (including nerve cell apoptosis and autophagy). Thus, having a reliable corpus of modern experimental studies proving the seriousness of the problem of the effects of electromagnetic fields on the nervous system in children and adolescents is important in the context of ever-increasing electromagnetic pollution, primarily from electromagnetic fields produced by cellular networks.Keywordsradio frequency electromagnetic field, Wi-Fi, 5G, parts of the brain, hippocampus, auditory system, morpho-histological changes in vivo, young animalsReferences1. Lai Y.-F., Wang H.-Y., Peng R.-Y. Establishment of Injury Models in Studies of Biological Effects Induced by Microwave Radiation. Mil. Med. Res., 2021, vol. 8, no. 1. Art. no. 12. https://doi.org/10.1186/s40779-021-00303-w2. Grigor’ev Yu.G., Grigor’ev O.A. Sotovaya svyaz’ i zdorov’e: elektromagnitnaya obstanovka, radiobiologicheskie i gigienicheskie problemy, prognoz opasnosti [Cellular Communication and Health: Electromagnetic Environment, Radiobiology and Hygiene Problems, Forecast of Danger]. Moscow, 2013. 567 p. 3. Tan S., Wang H., Xu X., Zhao L., Zhang J., Dong J., Yao B., Wang H., Zhou H., Gao Y., Peng R. Study on DoseDependent, Frequency-Dependent, and Accumulative Effects of 1.5 GHz and 2.856 GHz Microwave on Cognitive Functions in Wistar Rats. Sci. Rep., 2017, vol. 7, no. 1. Art. no. 10781. https://doi.org/10.1038/s41598-017-11420-9 4. Tan S., Wang H., Xu X., Zhao L., Zhang J., Dong J., Yao B., Wang H., Hao Y., Zhou H., Gao Y., Peng R. Acute Effects of 2.856 GHz and 1.5 GHz Microwaves on Spatial Memory Abilities and CREB-Related Pathways. Sci. Rep., 2021, vol. 11, no. 1. Art. no. 12348. https://doi.org/10.1038/s41598-021-91622-4 5. Zhu R., Wang H., Xu X., Zhao L., Zhang J., Dong J., Yao B., Wang H., Zhou H., Gao Y., Peng R. Effects of 1.5 and 4.3 GHz Microwave Radiation on Cognitive Function and Hippocampal Tissue Structure in Wistar Rats. Sci. Rep., 2021, vol. 11, no. 1. Art. no. 10061. https://doi.org/10.1038/s41598-021-89348-4 6. Sonmez O.F., Odaci E., Bas O., Kaplan S. Purkinje Cell Number Decreases in the Adult Female Rat Cerebellum Following Exposure to 900 MHz Electromagnetic Field. Brain Res., 2010, no. 1356, pp. 95–101. https://doi.org/10.1016/j.brainres.2010.07.103 7. Narayanan S.N., Kumar R.S., Karun K.M., Nayak S.B., Bhat P.G. Possible Cause for Altered Spatial Cognition of Prepubescent Rats Exposed to Chronic Radiofrequency Electromagnetic Radiation. Metab. Brain Dis., 2015, vol. 30, no. 5, pp. 1193–1206. https://doi.org/10.1007/s11011-015-9689-6 8. Kerimoğlu G., Hancı H., Baş O., Aslan A., Erol H.S., Turgut A., Kaya H., Çankaya S., Sönmez O.F., Odacı E. Pernicious Effects of Long-Term, Continuous 900-MHz Electromagnetic Field Throughout Adolescence on Hippocampus Morphology, Biochemistry and Pyramidal Neuron Numbers in 60-Day-Old Sprague Dawley Male Rats. J. Chem. Neuroanat., 2016, vol. 77, pp. 169–175. https://doi.org/10.1016/j.jchemneu.2016.07.004 9. Shahabi S., Taji I.H., Hoseinnezhaddarzi M., Mousavi F., Shirchi S., Nazari A., Zarei H., Pourabdolhossein F. Exposure to Cell Phone Radiofrequency Changes Corticotrophin Hormone Levels and Histology of the Brain and Adrenal Glands in Male Wistar Rat. Iran J. Basic Med. Sci., 2018, vol. 21, no. 12, pp. 1269–1274. https://doi.org/10.22038/ijbms.2018.29567.7133 10. Şahin A., Aslan A., Baş O., İkinci A., Özyılmaz C., Sönmez O.F., Çolakoğlu S., Odacı E. Deleterious Impacts of a 900-MHz Electromagnetic Field on Hippocampal Pyramidal Neurons of 8-Week-Old Sprague Dawley Male Rats. Brain Res., 2015, vol. 1624, pp. 232–238. https://doi.org/10.1016/j.brainres.2015.07.042 11. Keleş A.İ., Nyengaard J.R., Odacı E. Changes in Pyramidal and Granular Neuron Numbers in the Rat Hippocampus 7 Days After Exposure to a Continuous 900-MHz Electromagnetic Field During Early and Mid-Adolescence. J. Chem. Neuroanat., 2019, vol. 101. Art. no. 101681. https://doi.org/10.1016/j.jchemneu.2019.101681 12. Zhang J.-P., Zhang K.-Y., Guo L., Chen Q.-L., Gao P., Wang T., Li J., Guo G.-Z., Ding G.-R. Effects of 1.8 GHz Radiofrequency Fields on the Emotional Behavior and Spatial Memory of Adolescent Mice. Int. J. Environ. Res. Public Health, 2017, vol. 14, no. 11. Art. no. 1344. https://doi.org/10.3390/ijerph14111344 13. Motawi T.K., Darwish H.A., Moustafa Y.M., Labib M.M. Biochemical Modifications and Neuronal Damage in Brain of Young and Adult Rats After Long-Term Exposure to Mobile Phone Radiations. Cell Biochem. Biophys., 2014, vol. 70, no. 2, pp. 845–855. https://doi.org/10.1007/s12013-014-9990-8 14. Sharma A., Kesari K.K., Saxena V.K., Sisodia R. Ten Gigahertz Microwave Radiation Impairs Spatial Memory, Enzymes Activity, and Histopathology of Developing Mice Brain. Mol. Cell. Biochem., 2017, vol. 435, no. 1-2, pp. 1–13. https://doi.org/10.1007/s11010-017-3051-8 15. Mugunthan N., Shanmugasamy K., Anbalagan J., Rajanarayanan S., Meenachi S. Effects of Long Term Exposure of 900-1800 MHz Radiation Emitted from 2G Mobile Phone on Mice Hippocampus – a Histomorphometric Study. J. Clin. Diagn. Res., 2016, vol. 10, no. 8, pp. AF01–AF06. https://doi.org/10.7860/jcdr/2016/21630.8368 16. Bas O., Odaci E., Kaplan S., Acer N., Ucok K., Colakoglu S. 900 MHz Electromagnetic Field Exposure Affects Qualitative and Quantitative Features of Hippocampal Pyramidal Cells in the Adult Female Rat. Brain Res., 2009, vol. 1265, pp. 178–185. https://doi.org/10.1016/j.brainres.2009.02.011 17. Hasan I., Jahan M.R., Islam M.N., Islam M.R. Effect of 2400 MHz Mobile Phone Radiation Exposure on the Behavior and Hippocampus Morphology in Swiss Mouse Model. Saudi J. Biol. Sci., 2022, vol. 29, no. 1, pp. 102–110. https://doi.org/10.1016/j.sjbs.2021.08.063 18. Shahin S., Banerjee S., Singh S.P., Chaturvedi C.M. 2.45 GHz Microwave Radiation Impairs Learning and Spatial Memory via Oxidative/Nitrosative Stress Induced p53-Dependent/Independent Hippocampal Apoptosis: Molecular Basis and Underlying Mechanism. Toxicol. Sci., 2015, vol. 148, no. 2, pp. 380–399. https://doi.org/10.1093/toxsci/kfv205 19. Shahin S., Banerjee S., Swarup V., Singh S.P., Chaturvedi C.M. From the Cover: 2.45-GHz Microwave Radiation Impairs Hippocampal Learning and Spatial Memory: Involvement of Local Stress Mechanism-Induced Suppression of iGluR/ERK/CREB Signaling. Toxicol. Sci., 2018, vol. 161, no. 2, pp. 349–374. https://doi.org/10.1093/toxsci/kfx221 20. Keleş A.İ., Yıldırım M., Gedikli Ö., Çolakoğlu S., Kaya H., Baş O., Sönmez O.F., Odacı E. The Effects of a Continuous 1-h a Day 900-MHz Electromagnetic Field Applied Throughout Early and Mid-Adolescence on Hippocampus Morphology and Learning Behavior in Late Adolescent Male Rats. J. Chem. Neuroanat., 2018, vol. 94, pp. 46–53. https://doi.org/10.1016/j.jchemneu.2018.08.006 21. Wang H., Tan S., Xu X., Zhao L., Zhang J., Yao B., Gao Y., Zhou H., Peng R. Long Term Impairment of Cognitive Functions and Alterations of NMDAR Subunits After Continuous Microwave Exposure. Physiol. Behav., 2017, vol. 181, pp. 1–9. https://doi.org/10.1016/j.physbeh.2017.08.022 22. Sharma A., Sharma S., Shrivastava S., Singhal P.K., Shukla S. Mobile Phone Induced Cognitive and Neurochemical Consequences. J. Chem. Neuroanat., 2019, vol. 102. Art. no. 101684. https://doi.org/10.1016/j.jchemneu.2019.101684 23. Sharma S., Shukla S. Effect of Electromagnetic Radiation on Redox Status, Acetylcholine Esterase Activity and Cellular Damage Contributing to the Diminution of the Brain Working Memory in Rats. J. Chem. Neuroanat., 2020, vol. 106. Art. no. 101784. https://doi.org/10.1016/j.jchemneu.2020.101784 24. Saikhedkar N., Bhatnagar M., Jain A., Sukhwal P., Sharma C., Jaiswal N. Effects of Mobile Phone Radiation (900 MHz Radiofrequency) on Structure and Functions of Rat Brain. Neurol. Res., 2014, vol. 36, no. 12, pp. 1072–1079. https://doi.org/10.1179/1743132814y.0000000392 25. Singh K.V., Prakash C., Nirala J.P., Nanda R.K., Rajamani P. Acute Radiofrequency Electromagnetic Radiation Exposure Impairs Neurogenesis and Causes Neuronal DNA Damage in the Young Rat Brain. Neurotoxicology, 2023, vol. 94, pp. 46–58. https://doi.org/10.1016/j.neuro.2022.11.001 26. Kim J.H., Chung K.H., Hwang Y.R., Park H.R., Kim H.J., Kim H.-G., Kim H.R. Exposure to RF-EMF Alters Postsynaptic Structure and Hinders Neurite Outgrowth in Developing Hippocampal Neurons of Early Postnatal Mice. Int. J. Mol. Sci., 2021, vol. 22, no. 10. Art. no. 5340. https://doi.org/10.3390/ijms22105340 27. Zhi W.-J., Peng R.-Y., Li H.-J., Zou Y., Yao B.-W., Wang C.-Z., Liu Z.-H., Gao X.-H., Xu X.-P., Dong J., Zhao L., Zhou H.-M., Wang L.-F., Hu X.-J. Microwave Radiation Leading to Shrinkage of Dendritic Spines in Hippocampal Neurons Mediated by SNK-SPAR Pathway. Brain Res., 2018, vol. 1679, pp. 134–143. https://doi.org/10.1016/j.brainres.2017.11.020 28. Pchitskaya E.I., Krylov I.S., Vlasova O.L., Bolsunovskaya M.V., Bezprozvanny I.B. Analysis of Dendritic Spines Morphology: From Classical Division to Types Toward Alternative Approaches. St. Petersburg Polytech. State Univ. J. Phys. Math., 2019, vol. 12, no. 2, pp. 88–100 (in Russ.). https://doi.org/10.18721/JPM.12207 29. Sharma A., Shrivastava S., Shukla S. Exposure of Radiofrequency Electromagnetic Radiation on Biochemical and Pathological Alterations. Neurol. India, 2020, vol. 68, no. 5, pp. 1092–1100. https://doi.org/10.4103/0028-3886.294554 30. Tang J., Zhang Y., Yang L., Chen Q., Tan L., Zuo S., Feng H., Chen Z., Zhu G. Exposure to 900 MHz Electromagnetic Fields Activates the mkp-1/ERK Pathway and Causes Blood-Brain Barrier Damage and Cognitive Impairment in Rats. Brain Res., 2015, vol. 1601, pp. 92–101. https://doi.org/10.1016/j.brainres.2015.01.019 31. Eser O., Songur A., Aktas C., Karavelioglu E., Caglar V., Aylak F., Ozguner F., Kanter M. The Effect of Electromagnetic Radiation on the Rat Brain: An Experimental Study. Turk. Neurosurg., 2013, vol. 23, no. 6, pp. 707– 715. https://doi.org/10.5137/1019-5149.jtn.7088-12.2 32. Aslan A., İkinci A., Baş O., Sönmez O.F., Kaya H., Odacı E. Long-Term Exposure to a Continuous 900 MHz Electromagnetic Field Disrupts Cerebellar Morphology in Young Adult Male Rats. Biotech. Histochem., 2017, vol. 92, no. 5, pp. 324–330. https://doi.org/10.1080/10520295.2017.1310295 33. Ibitayo A.O., Afolabi O.B., Akinyemi A.J., Ojiezeh T.I., Adekoya K.O., Ojewunmi O.O. RAPD Profiling, DNA Fragmentation, and Histomorphometric Examination in Brains of Wistar Rats Exposed to Indoor 2.5 Ghz Wi-Fi Devices Radiation. Biomed. Res. Int., 2017, vol. 2017. Art. no. 8653286. https://doi.org/10.1155/2017/8653286 34. Sistani S., Fatemi I., Shafeie S.A., Kaeidi A., Azin M., Shamsizadeh A. The Effect of Wi-Fi Electromagnetic Waves on Neuronal Response Properties in Rat Barrel Cortex. Somatosens. Mot. Res., 2019, vol. 36, no. 4, pp. 292–297. https://doi.org/10.1080/08990220.2019.1689116 35. Kim J.H., Yu D.-H., Huh Y.H., Lee E.H., Kim H.-G., Kim H.R. Long-Term Exposure to 835 MHz RF-EMF Induces Hyperactivity, Autophagy and Demyelination in the Cortical Neurons of Mice. Sci. Rep., 2017, vol. 7. Art. no. 41129. https://doi.org/10.1038/srep41129 36. Court-Kowalski S., Finnie J.W., Manavis J., Blumbergs P.C., Helps S.C., Vink R. Effect of Long-Term (2 Years) Exposure of Mouse Brains to Global System for Mobile Communication (GSM) Radiofrequency Fields on Astrocytic Immunoreactivity. Bioelectromagnetics, 2015, vol. 36, no. 3, pp. 245–250. https://doi.org/10.1002/bem.21891 37. İkinci A., Mercantepe T., Unal D., Erol H.S., Şahin A., Aslan A., Baş O., Erdem H., Sönmez O.F., Kaya H., Odacı E. Morphological and Antioxidant Impairments in the Spinal Cord of Male Offspring Rats Following Exposure to a Continuous 900 MHz Electromagnetic Field During Early and Mid-Adolescence. J. Chem. Neuroanat., 2016, vol. 75, pt. B, pp. 99–104. https://doi.org/10.1016/j.jchemneu.2015.11.006 38. Mercantepe T., Tümkaya L., Gökçe M.F., Topal Z.S., Esmer E. Effect of 900-MHz Electromagnetic Field on the Cerebellum: A Histopathological Investigation. Sisli Etfal Hastan Tıp. Bul., 2018, vol. 52, no. 2, pp. 129–134. https://doi.org/10.14744/semb.2018.42275 39. Kim J.H., Kim H.-J., Yu D.-H., Kweon H.-S., Huh Y.H., Kim H.R. Changes in Numbers and Size of Synaptic Vesicles of Cortical Neurons Induced by Exposure to 835 MHz Radiofrequency-Electromagnetic Field. PLoS One, 2017, vol. 12, no. 10. Art. no. e0186416. https://doi.org/10.1371/journal.pone.0186416 40. Kim J.H., Lee C.-H., Kim H.-G., Kim H.R. Decreased Dopamine in Striatum and Difficult Locomotor Recovery from MPTP Insult After Exposure to Radiofrequency Electromagnetic Fields. Sci. Rep., 2019, vol. 9, no. 1. Art. no. 1201. https://doi.org/10.1038/s41598-018-37874-z 41. Kim J.H., Huh Y.H., Kim H.R. Trafficking of Synaptic Vesicles Is Changed at the Hypothalamus by Exposure to an 835 MHz Radiofrequency Electromagnetic Field. Gen. Physiol. Biophys., 2019, vol. 38, no. 5, pp. 379–388. https:// doi.org/10.4149/gpb_2019020 42. Alekseev S.I., Gordiienko O.V., Radzievsky A.A., Ziskin M.C. Millimeter Wave Effects on Electrical Responses of the Sural Nerve in vivo. Bioelectromagnetics, 2010, vol. 31, no. 3, pp. 180–190. https://doi.org/10.1002/bem.20547 43. Grigor’ev Yu.G., Khorseva N.I. Mobil’naya svyaz’ i zdorov’e detey. Otsenka opasnosti primeneniya mobil’noy svyazi det’mi i podrostkami. Rekomendatsii detyam i roditelyam [Mobile Communications and Child Health. Risk Assessment of the Use of Mobile Communications by Children and Adolescents. Recommendations for Children and Their Parents]. Moscow, 2014. 230 p. 44. Khorseva N.I., Grigor’ev Yu.G., Gorbunova N.V. Izmenenie parametrov prostoy slukho-motornoy reaktsii detey-pol’zovateley mobil’noy svyaz’yu: longityudnoe issledovanie [Changes in the Parameters of the Simple AuditoryMotor Response in Children Users of Mobile Communication: Longitudinal Study]. Radiatsionnaya biologiya. Radioekologiya, 2012, vol. 52, no. 3, pp. 282–292. 45. Özgür A., Tümkaya L., Terzi S., Kalkan Y., Erdivanlı Ö.Ç., Dursun E. Effects of Chronic Exposure to Electromagnetic Waves on the Auditory System. Acta Otolaryngol., 2015, vol. 135, no. 8, pp. 765–770. https://doi.org/10.3109/00016489.2015.1032434 46. Çeliker M., Özgür A., Tümkaya L., Terzi S., Yılmaz M., Kalkan Y., Erdoğan E. Effects of Exposure to 2100MHz GSM-Like Radiofrequency Electromagnetic Field on Auditory System of Rats. Braz. J. Otorhinolaryngol., 2017, vol. 83, no. 6, pp. 691–696. https://doi.org/10.1016/j.bjorl.2016.10.004 47. Kim J.H., Huh Y.H., Lee J.-H., Jung J.Y., Ahn S.C., Kim H.R. Early Exposure to Radiofrequency Electromagnetic Fields at 1850 MHz Affects Auditory Circuits in Early Postnatal Mice. Sci. Rep., 2019, vol. 9, no. 1. Art. no. 377. https://doi.org/10.1038/s41598-018-36868-1 48. Lin Y., Gao P., Guo Y., Chen Q., Lang H., Guo Q., Miao X., Li J., Zeng L., Guo G. Effects of Long-Term Exposure to L-Band High-Power Microwave on the Brain Function of Male Mice. Biomed. Res. Int., 2021, vol. 2021. Art. no. 2237370. https://doi.org/10.1155/2021/2237370 49. Yorgancilar E., Dasdag S., Akdag M.Z., Akkus Z., Akdag M., Topcu I. Does All-Day and Long-Term Exposure to Radiofrequency Radiation Emitted from Wi-Fi Affect Hearing? Biotechnol. Biotechnol. Equip., 2017, vol. 31, no. 6, pp. 1204–1209. https://doi.org/10.1080/13102818.2017.1373033 50. Yang H., Zhang Y., Wu X., Gan P., Luo X., Zhong S., Zuo W. Effects of Acute Exposure to 3500 MHz (5G) Radiofrequency Electromagnetic Radiation on Anxiety-Like Behavior and the Auditory Cortex in Guinea Pigs. Bioelectromagnetics, 2022, vol. 43, no. 2, pp. 106–118. https://doi.org/10.1002/bem.22388 51. Wang H., Liu Y., Sun Y., Dong J., Xu X., Wang H., Zhao X., Zhang J., Yao B., Zhao L., Liu S., Peng R. Changes in Cognitive Function, Synaptic Structure and Protein Expression After Long-Term Exposure to 2.856 and 9.375 GHz Microwaves. Cell Commun. Signal., 2023, vol. 21, no. 1. Art. no. 34. https://doi.org/10.1186/s12964-022-01011-1 52. Ertilav K., Uslusoy F., Ataizi S., Nazıroğlu M. Long Term Exposure to Cell Phone Frequencies (900 and 1800 MHz) Induces Apoptosis, Mitochondrial Oxidative Stress and TRPV1 Channel Activation in the Hippocampus and Dorsal Root Ganglion of Rats. Metab. Brain Dis., 2018, vol. 33, no. 3, pp. 753–763. https://doi.org/10.1007/s11011-017-0180-4 53. Varghese R., Majumdar A., Kumar G., Shukla A. Rats Exposed to 2.45GHz of Non-Ionizing Radiation Exhibit Behavioral Changes with Increased Brain Expression of Apoptotic Caspase 3. Pathophysiology, 2018, vol. 25, no. 1, pp. 19–30. https://doi.org/10.1016/j.pathophys.2017.11.001 54. Kim J.H., Yu D.-H., Kim H.R. Activation of Autophagy at Cerebral Cortex and Apoptosis at Brainstem Are Differential Responses to 835 MHz RF-EMF Exposure. Korean J. Physiol. Pharmacol., 2017, vol. 21, no. 2, pp. 179–188. https://doi.org/10.4196/kjpp.2017.21.2.179 55. Zenkov N.K., Chehushkov A.V., Kozhin P.M., Martinovich G.G., Kandalintseva N.V., Menshchikova E.B. Autophagy as a Protective Mechanism in Oxidative Stress. Bull. Sib. Med., 2019, vol. 18, no. 2, pp. 195–214 (in Russ.). https://doi.org/10.20538/1682-0363-2019-2-195-214 56. Kovaleva O.B., Shitova M.S., Zborovskaya I.B. Autofagiya: kletochnaya gibel’ ili sposob vyzhivaniya? [Autophagy: Cell Death or Survival Strategy?]. Klinicheskaya onkogematologiya. Fundamental’nye issledovaniya i klinicheskay praktika, 2014, vol. 7, no. 2, pp. 103–113. 57. Joushomme A., Garenne A., Dufossée M., Renom R., Ruigrok H.J., Chappe Y.L., Canovi A., Patrignoni L., Hurtier A., Poulletier de Gannes F., Lagroye I., Lévêque P., Lewis N., Priault M., Arnaud-Cormos D., Percherancier Y. Label-Free Study of the Global Cell Behavior During Exposure to Environmental Radiofrequency Fields in the Presence or Absence of Pro-Apoptotic or Pro-Autophagic Treatments. Int. J. Mol. Sci., 2022, vol. 23, no. 2. Art. no. 658. https://doi.org/10.3390/ijms23020658 58. Kim J.H., Huh Y.H., Kim H.R. Induction of Autophagy in the Striatum and Hypothalamus of Mice After 835 MHz Radiofrequency Exposure. PLoS One, 2016, vol. 11, no. 4. Art. no. e0153308. https://doi.org/10.1371/journal.pone.0153308 59. Kim J.H., Sohn U.D., Kim H.-G., Kim H.R. Exposure to 835 MHz RF-EMF Decreases the Expression of Calcium Channels, Inhibits Apoptosis, but Induces Autophagy in the Mouse Hippocampus. Korean J. Physiol. Pharmacol., 2018, vol. 22, no. 3, pp. 277–289. https://doi.org/10.4196/kjpp.2018.22.3.277 60. Kim J.H., Lee J.-K., Kim H.-G., Kim K.-B., Kim H.R. Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System. Biomol. Ther. (Seoul), 2019, vol. 27, no. 3, pp. 265–275. https://doi.org/10.4062/biomolther.2018.152 |
Make a Submission
INDEXED IN:
|