CC..png    

Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Biophysical Properties of Blood Cells in People Aged 36–59 Years Under Mechanical Stress in vitro. P. 484–492

Версия для печати

Section: Biological sciences

Download (pdf, 0.5MB )

UDC

576.385:612.67

DOI

10.37482/2687-1491-Z209

Authors

Evgeniya A. Sladkova* ORCID: https://orcid.org/0000-0003-3072-2402
Tatyana S. Shevchenko* ORCID: https://orcid.org/0000-0001-7327-2662
Elena A. Shentseva* ORCID: https://orcid.org/0000-0002-7309-0970
Ludmila R. Zakirova* ORCID: https://orcid.org/0000-0001-7361-8598
*Belgorod State National Research University (Belgorod, Russia)
Corresponding author: Evgeniya Sladkova, address: ul. Pobedy 85, Belgorod, 308015, Russia; e-mail: sladkova@bsu.edu.ru

Abstract

The influence of the adenosine triphosphate molecule on cell signalling cascades under different physiological conditions, such as disrupted regeneration processes in the body, is of particular interest for scientists. The purpose of this research was to study the biophysical properties of formed elements in middle-aged people under mechanical stress in vitro. Materials and methods. The experiment was conducted at the Biochemistry Department of the Medical Institute, Belgorod State National Research University. We studied blood samples from healthy people aged 36 to 59 years (n = 30) undergoing a routine medical examination at St. Joasaph Belgorod Regional Clinical Hospital. All samples were divided into experimental (n = 30) and control (n = 30); the former were subjected to mechanical action, the latter remained intact. Methods of atomic force microscopy were applied, namely, force spectroscopy and the Kelvin probe. Cell surface stiffness was determined by calculating Young’s modulus. Results. Under mechanical stress in vitro, the surface charge of erythrocytes, segmented granulocytes, and lymphocytes became more negative, while the surface potential of platelet plasmalemma became more positive. At the same time, surface stiffness of erythrocytes and lymphocytes increased, while that of neutrophils and platelets decreased. The results of this study expand the knowledge about changes in the biophysical properties of blood cells under mechanical stress. The data obtained may be useful for understanding the mechanisms of interaction between leukocytes and platelets, both being the main regulators of homeostatic processes in the bloodstream, and erythrocytes, involved in the regulation of the vascular tone of arterioles and, as a consequence, tissue perfusion, in middle-aged adults.

For citation: Sladkova E.A., Shevchenko T.S., Shentseva E.A., Zakirova L.R. Biophysical Properties of Blood Cells in People Aged 36–59 Years Under Mechanical Stress in vitro. Journal of Medical and Biological Research, 2024, vol. 12, no. 4, pp. 484–492. DOI: 10.37482/2687-1491-Z209

Keywords

middle age, mechanical stress in vitro, biophysical properties of blood cells, cell surface charge, Young’s modulus, atomic force microscopy

References

1. Cui Y., Li C., Zeng X., Wei X., Li P., Cheng J., Xu Q., Yang Y. ATP Purinergic Receptor Signalling Promotes Sca‑1+ Cell Proliferation and Migration for Vascular Remodelling. Cell Commun. Signal., 2023, vol. 21. Art. no. 173. https://doi.org/10.1186/s12964-023-01185-2
2. Zhang Y., Wernly B., Cao X., Mustafa S.J., Tang Y., Zhou Z. Adenosine and Adenosine Receptor‑Mediated Action in Coronary Microcirculation. Basic Res. Cardiol., 2021, vol. 116, no. 1. Art. no. 22. https://doi.org/10.1007%2Fs00395-021-00859-7
3. Burnstock G. Introduction to Purinergic Signaling. Pelegrín P. (ed.). Purinergic Signaling: Methods and Protocols. New York, 2020, pp. 1–15. https://doi.org/10.1007/978-1-4939-9717-6_1
4. Kovalenko S.S., Yusipovich A.I., Parshina E.Y., Maksimov G.V. Role of Purinergic Receptors of Erythrocytes in the Regulation of Conformation and Oxygen- and NO-Transporting Capacity of Hemoglobin. Bull. Exp. Biol. Med., 2015, vol. 159, no. 2, pp. 213–216.
5. Serebryanaya N.B., Fomicheva E.E., Yakutseni P.P. Purinergicheskaya regulyatsiya neyrovospaleniya pri cherepno-mozgovoy travme [Purinergic Regulation of Neuroinflammation in Traumatic Brain Injury]. Uspekhi fiziologicheskikh nauk, 2021, vol. 52, no. 3, pp. 24–40. https://doi.org/10.31857/S0301179821030073
6. Zhou Z. Purinergic Interplay Between Erythrocytes and Platelets in Diabetes‑Associated Vascular Dysfunction. Purinergic Signal., 2021, vol. 17, no. 4, pp. 705–712. https://doi.org/10.1007/s11302-021-09807-5
7. Olivieri A., Pala M., Gandini F., Kashani B.H., Perego U.A., Woodward S.R., Grugni V., Battaglia V., Semino O., Achilli A., Richards M.B., Torroni A. Mitogenomes from Two Uncommon Haplogroups Mark Late Glacial/Postglacial
Expansions from the Near East and Neolithic Dispersals Within Europe. PLoS One, 2013, vol. 8, no. 7. Art. no. e70492. https://doi.org/10.1371/journal.pone.0070492
8. Uzikova E.V., Miloradov M.Yu., Levin V.N., Bulaeva S.V., Murav’ev A.V., Chirkova Zh.V. Issledovanie izmeneniya agregatsii eritrotsitov pri inkubatsii s zameshchennymi 4-gidroksi-6,7-ditsiano-1,4-benzoksazin-3-onami [Research of Change of Red Blood Cell Aggregation During Incubation with 4-hydroxy-6,7-dicyanobenzoxazine-3-ones]. Yaroslavskiy pedagogicheskiy vestnik, 2011, vol. 3, no. 3, pp. 108–112.
9. Mahdi A., Tratsiakovich Y., Tengbom J., Jiao T., Garib L., Alvarsson M., Yang J., Pernow J., Zhou Z. Erythrocytes Induce Endothelial Injury in Type 2 Diabetes Through Alteration of Vascular Purinergic Signaling. Front. Pharmacol., 2020, vol. 11. Art. no. 603226. https://doi.org/10.3389%2Ffphar.2020.603226
10. Lee N.T., Ong L.K., Gyawali P., Nassir C.M.N.C.M., Mustapha M., Nandurkar H.H., Sashindranath M. Role of Purinergic Signalling in Endothelial Dysfunction and Thrombo-Inflammation in Ischaemic Stroke and Cerebral Small Vessel Disease. Biomolecules, 2021, vol. 11, no. 7. Art. no. 994. https://doi.org/10.3390/biom11070994
11. Oonishi T., Sakashita K., Uyesaka N. Regulation of Red Blood Cell Filterability by Ca2+ Influx and cAMP-Mediated Signaling Pathways. Am. J. Physiol., 1997, vol. 273, no. 6, pp. C1828–C1834. https://doi.org/10.1152/ajpcell.1997.273.6.c1828
12. Sladkova E.A., Shamray E.A., Tishchenko A.Yu., Skorkina M.Yu. Izmenenie fiziko-khimicheskikh svoystv limfotsitov v usloviyakh mekhanicheskogo stressa [Changes in Biophysical Properties of Lymphocytes Under Mechanical Stress]. Biofizika, 2019, no. 4, pp. 716–719. https://doi.org/10.1134/S0006302919040094
13. Sladkova E.A., Skorkina M.Y. Estimation of Surface Potential of Lymphocytes from Patients with Leukemia Using Kelvin Probe Mode. Biophysics, 2014, vol. 59, no. 2, pp. 254– 256.
14. Skorkina M.Yu., Fedorova M.Z., Sladkova E.A., Zabinyakov N.A. Method for Determining Blood Cell Elasticity. Patent RF no. 2466401, 2011 (in Russ.).
15. Skorkina M.Yu., Fedorova M.Z., Murav’ev A.V., Sladkova E.A. Ispol’zovanie nanomekhanicheskogo sensora dlya izucheniya morfofunktsional’nykh svoystv limfotsitov zdorovykh donorov i bol’nykh khronicheskim limfoblastnym leykozom [The Use of a Nanomechanical Sensor to Study the Morphofunctional Properties of Lymphocytes from Healthy Donors and Patients with Chronic Lymphocytic Leukemia]. Kletochnye tekhnologii v biologii i meditsine, 2012, no. 3, pp. 172–175.
16. Ellsworth M.L., Ellis C.G., Goldman D., Stephenson A.H., Dietrich H.H., Sprague R.S. Erythrocytes: Oxygen Sensor and Modulators of Vascular Tone. Physiology (Bethesda), 2009, vol. 24, no. 2, pp. 107–116. https://doi.org/10.1152%2Fphysiol.00038.2008
17. Zhou Z., Matsumoto T., Jankowski V., Pernow J., Jamal Mustafa S., Duncker D.J., Merkus D. Uridine Adenosine Tetraphosphate and Purinergic Signaling in Cardiovascular System: An Update. Pharmacol. Res., 2019, vol. 141, pp. 32–45. https://doi.org/10.1016/j.phrs.2018.12.009
18. Chandran N., Iyer M., Siama Z., Vellingiri B., Narayanasamy A. Purinergic Signalling Pathway: Therapeutic Target in Ovarian Cancer. Egypt. J. Med. Hum. Genetics, 2020, vol. 21. Art. no. 23. http://dx.doi.org/10.1186/s43042-020-00059-3
19. Engel T., Jiménez-Mateos E.M., Diaz-Hernandez M. Purinergic Signalling and Inflammation-Related Diseases. Cells, 2022, vol. 11, no. 23. Art. no. 3748. https://doi.org/10.3390/cells11233748
20. De Ita M., Vargas M.H., Carbajal V., Ortiz-Quentero B., López-López C., Miranda-Morales M., Barajas-López C., Montaño L.M. ATP Releases ATP or Other Nucleotides from Human Peripheral Blood Leukocytes Through Purinergic P2 Receptors. Life Sci., 2016, vol. 145, pp. 85–92. https://doi.org/10.1016/j.lfs.2015.12.013
21. Junger W.G. Purinergic Regulation of Neutrophil Chemotaxis. Cell. Mol. Life Sci., 2008, vol. 65, no. 16, pp. 2528–2540. https://doi.org/10.1007/s00018-008-8095-1
22. North R.A. P2X Receptors. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2016, vol. 371, no. 1700. Art. no. 20150427. https://doi.org/10.1098/rstb.2015.0427
23. Goldman N., Chandler-Militello D., Langevin H.M., Nedergaard M., Takano T. Purine Receptor Mediated Actin Cytoskeleton Remodeling of Human Fibroblasts. Cell Calcium, 2013, vol. 53, no. 4, pp. 297–301. https://doi.org/10.1016/j.ceca.2013.01.004
24. Huang Z., Xie N., Illes P., Di Virgilio F., Ulrich H., Semyanov A., Verkhratsky A., Sperlagh B., Yu S.-G., Huang C., Tang Y. From Purines to Purinergic Signalling: Molecular Functions and Human Diseases. Signal Transduct. Target. Ther., 2021, vol. 6, no. 1. Art. no. 162. https://doi.org/10.1038/s41392-021-00553-z



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
obl_les2023.jpg 

Arctic and North  

AiS.jpg