Legal and postal addresses of the publisher: office 1336, 17 Naberezhnaya Severnoy Dviny, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21 ABOUT JOURNAL
|
Section: Review articles Download (pdf, 0.5MB )UDC616.1:[612.33+579.67]DOI10.37482/2687-1491-Z218AuthorsLiana L. Valeeva* ORCID: https://orcid.org/0000-0002-0627-1907Anastasiya E. Shcherbinina* ORCID: https://orcid.org/0000-0001-7599-8475 Ksenia S. Avdeeva* ORCID: https://orcid.org/0000-0002-2134-4107 Ekaterina V. Zueva* ORCID: https://orcid.org/0000-0002-6108-811X Mariya V. Lyapina*/** ORCID: https://orcid.org/0000-0002-9608-2746 Tatiana I. Petelina* ORCID: https://orcid.org/0000-0001-6251-4179 *Tyumen Cardiology Research Center, Branch of Tomsk National Research Medical Center, Russian Academy of Sciences (Tyumen, Russia) **Tyumen State Medical University (Tyumen, Russia) Corresponding author: Tatiana Petelina, address: ul. Mel’nikayte 111, Tyumen, 625026, Russia; e-mail: petelina@infarkta.net AbstractCardiovascular diseases (CVDs) remain the leading cause of death around the world, claiming the lives of over 17 million people annually. In Russia, CVDs occupy a central place among all causes of mortality and disability. Circulatory system diseases account for 57 % of the total mortality structure in Russia. Nearly 20 % of the population die at working age. In 90 % of cases, the cause of death is coronary heart disease or stroke. The purpose of this article was to review the existing knowledge of the role of intestinal microbiota in the development of CVDs, with an emphasis on laboratory testing of metabolites and the ways of treating dysbiosis according to scientific literature and guidelines. The sample included 607 works on the role of microbiota in the development of CVDs published between 2019 and 2023. The following databases were searched: Cyberleninka, eLIBRARY.RU, SpringerLink, Web of Science, Frontiers, Google Scholar and others. In the last 10 years, studies on the intestinal microbiome have shown that the human microbial ecosystem not only serves as an additional neuro-endocrine organ, but also plays an important role in the development and prevention of CVDs, circulatory pathologies, and serious metabolic disorders such as obesity, diabetes mellitus and metabolic syndrome, as well as thyroid and autoimmune diseases. In this regard, studies into the effect of microbiota on the development of CVDs using new biochemical markers of the qualitative composition of the microbiome and intestinal metabolome, demonstrating an association with the risk of developing CVDs, are viewed as extremely relevant. Probiotic and prebiotic agents combined with long-term physical training can be used to prevent the development and progression of CVDs and to personalize treatment.For citation: Valeeva L.L., Shcherbinina A.E., Avdeeva K.S., Zueva E.V., Lyapina M.V., Petelina T.I. The Role of Intestinal Microbiota in the Development of Cardiovascular Diseases. Diagnostic Methods and Correction (Review). Journal of Medical and Biological Research, 2024, vol. 12, no. 4, pp. 534–547. DOI: 10.37482/2687-1491-Z218 Keywordsintestinal microbiome, cardiovascular diseases, serum biomarkers, prebiotics, probiotics, young women with low physical activityReferences1. Tsao C.W., Aday A.W., Almarzooq Z.I., Anderson C.A.M., Arora P., Avery C.L., Baker-Smith C.M., Beaton A.Z., Boehme A.K., Buxton A.E., et al. Heart Disease and Stroke Statistics – 2023 Update: A Report from the American Heart Association. Circulation, 2023, vol. 147, no. 8, pp. e93–e621. https://doi.org/10.1161/cir.00000000000011232. Glushchenko V.A., Irklienko E.K. Serdechno-sosudistaya zabolevaemost’ – odna iz vazhneyshikh problem zdravookhraneniya [Cardiovascular Morbidity – One of the Most Vital Problems of Modern Health Care]. Meditsina i organizatsiya zdravookhraneniya, 2019, vol. 4, no. 1, pp. 56–63. 3. Nurgalieva G.K., Aymakhanova G.T., Nasyrova N.B., Bakyt A.B., Seydekhan R.O., Shynbori G.N., Esentay N.S., Madali A.M., Malkazhdar Sh.E. Faktory riska infarkta miokarda u muzhchin srednego i pozhilogo vozrasta [Risk Factors for Myocardial Infarction in Middle-Aged and Elderly Men]. Universum: meditsina i farmakologiya, 2023, no. 4-5, pp. 8–17. 4. Kosolapov V.P., Yarmonova M.V. The Analysis of High Cardiovascular Morbidity and Mortality in the Adult Population as a Medical and Social Problem and the Search for Ways to Solve It. Ural Med. J., 2021, vol. 20, no. 1, pp. 58–64 (in Russ.). https://doi.org/10.52420/2071-5943-2021-20-1-58-64 5. Bichurin D.R., Atmaykina O.V., Cherepanova O.A. Serdechno-sosudistye zabolevaniya, regional’nyy aspekt [Cardiovascular Diseases. A Regional Aspect]. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal, 2023, no. 8. Art. no. 116. https://doi.org/10.23670/IRJ.2023.134.103 6. Bhardwaj H. Physiology of Normal Microflora of Human Body. Biologiya i integrativnaya meditsina, 2021, no. 6, pp. 406–410. 7. Marchesi J.R., Adams D.H., Fava F., Hermes G.D.A., Hirschfield G.M., Hold G., Quraishi M.N., Kinross J., Smidt H., Tuohy K.M., Thomas L.V., Zoetendal E.G., Hart A. The Gut Microbiota and Host Health: A New Clinical Frontier. Gut, 2016, vol. 65, no. 2, pp. 330–339. https://doi.org/10.1136/gutjnl-2015-309990 8. Reynoso-García J., Miranda-Santiago А.Е., Meléndez-Vázquez N.M., Acosta-Pagán K., Sánchez-Rosado M., Díaz-Rivera J., Rosado-Quiñones A.M., Acevedo-Márquez L., Cruz-Roldán L., Tosado-Rodríguez E.L., Figueroa-Gispert M.D.M., Godoy-Vitorino F. A Complete Guide to Human Microbiomes: Body Niches, Transmission, Development, Dysbiosis, and Restoration. Front. Syst. Biol., 2022, vol. 2. Art. no. 951403. https://doi.org/10.3389/fsysb.2022.951403 9. Suárez J., Stencel А. A Part-Dependent Account of Biological Individuality: Why Holobionts Are Individuals and Ecosystems Simultaneously. Biol. Rev. Camb. Philos. Soc., 2020, vol. 95, no. 5, pp. 1308–1324. https://doi.org/10.1111/brv.12610 10. Petrukhina N.B., Zorina O.A., Rabinovich I.M., Shilov A.M. Epidemiologicheskie vzaimosvyazi parodontita, disbioza kishechnika, aterogennoy dislipidemii pri metabolicheskom sindrome [The Epidemiological Relationship of Periodontitis, Intestinal Dysbiosis, Atherogenic Dyslipidemia and Metabolic Syndrome]. Stomatologiya, 2015, vol. 94, no. 2, pp. 16–19. https://doi.org/10.17116/stomat201594216-19 11. Agapitov A.E., Ivanova M.A. Obosnovanie probiotikoterapii s pozitsii zadach integrativnoy i profilakticheskoy meditsiny [Justification of Probiotic Therapy from the Standpoint of the Objectives of Integrative and Preventive Medicine]. Agapitov A.E. (ed.). Aktual’nye voprosy sovershenstvovaniya metodologii sotsial’noy i profilakticheskoy meditsiny [Current Issues of Improving the Methodology of Social and Preventive Medicine]. Irkutsk, 2019, pp. 17–27. 12. Farzi A., Fröhlich Е.Е., Holzer P. Gut Microbiota and the Neuroendocrine System. Neurotherapeutics, 2018, vol. 15, no. 1, pp. 5–22. https://doi.org/10.1007/s13311-017-0600-5 13. Alhajri N., Khursheed R., Ali M.T., Abu Izneid T., Al-Kabbani O., Al-Haidar М.В., Al-Hemeiri F., Alhashmi M., Pottoo F.H. Cardiovascular Health and the Intestinal Microbial Ecosystem: The Impact of Cardiovascular Therapies on the Gut Microbiota. Microorganisms, 2021, vol. 9, no. 10. Art. 2013. https://doi.org/10.3390/microorganisms9102013 14. Rajendiran E., Ramadass B., Ramprasath V. Understanding Connections and Roles of Gut Microbiome in Cardiovascular Diseases. Can. J. Microbiol., 2021, vol. 67, no. 2, pp. 101–111. https://doi.org/10.1139/cjm-2020-0043 15. Sankararaman S., Noriega K., Velayuthan S., Sferra T., Martindale R. Gut Microbiome and Its Impact on Obesity and Obesity-Related Disorders. Curr. Gastroenterol. Rep., 2023, vol. 25, no. 2, pp. 31–44. https://doi.org/10.1007/s11894-022-00859-0 16. Salazar J., Angarita L., Morillo V., Navarro С., Martínez M.S., Chacín M., Torres W., Rajotia A., Rojas M., Cano C., Añez R., Rojas J., Bermudez V. Microbiota and Diabetes Mellitus: Role of Lipid Mediators. Nutrients, 2020, vol. 12, no. 10. Art. no. 3039. https://doi.org/10.3390/nu12103039 17. Tanaka M., Itoh H. Hypertension as a Metabolic Disorder and the Novel Role of the Gut. Curr. Hypertens. Rep., 2019, vol. 21, no. 8. Art. no. 63. https://doi.org/10.1007/s11906-019-0964-5 18. Santos-Marcos J.A., Perez-Jimenez F., Camargo А. The Role of Diet and Intestinal Microbiota in the Development of Metabolic Syndrome. J. Nutr. Biochem., 2019, vol. 70, pp. 1–27. https://doi.org/10.1016/j.jnutbio.2019.03.017 19. Alkader D.A.A., Asadi N., Solangi U., Singh R., Rasuli S.F., Farooq M.J. Raheela F.N.U., Waseem R., Gilani S.M., Abbas K., Ahmed M., Tanoh D.B., Shah H.H., Dulal A., Hussain M.S., Talpur A.S. Exploring the Role of Gut Microbiota in Autoimmune Thyroid Disorders: A Systematic Review and Meta-Analysis. Front. Endocrinol. (Lausanne), 2023, vol. 14. Art. no. 1238146. https://doi.org/10.3389/fendo.2023.1238146 20. Gong J., Li L., Zuo X., Li Y. Change of the Duodenal Mucosa-Associated Microbiota Is Related to Intestinal Metaplasia. BMC Microbiol., 2019, vol. 19, no. 1. Art. no. 275. https://doi.org/10.1186/s12866-019-1666-5 21. Qian B., Zhang K., Li Y., Sun K. Update on Gut Microbiota in Cardiovascular Diseases. Front. Cell. Infect. Microbiol., 2022, vol. 12. Art. no. 1059349. https://doi.org/10.3389/fcimb.2022.1059349 22. Zhen J., Zhou Z., He M., Han Н.-Х., Lv Е.-Н., Wen P.-B., Liu X., Wang Y.-T., Cai X.-C., Tian J.-Q., Zhang M.-Y., Xiao L., Kang X.-X. The Gut Microbial Metabolite Trimethylamine N-Oxide and Cardiovascular Diseases. Front. Endocrinol. (Lausanne), 2023, vol. 14. Art. no. 1085041. https://doi.org/10.3389/fendo.2023.1085041 23. Kim S., Goel R., Kumar A., Qi Y., Lobaton G., Hosaka K., Mohammed M., Handberg E.M., Richards E.M., Pepine C.J., Raizada M.K. Imbalance of Gut Microbiome and Intestinal Epithelial Barrier Dysfunction in Patients with High Blood Pressure. Clin. Sci. (Lond.), 2018, vol. 132, no. 6, pp. 701–718. https://doi.org/10.1042/cs20180087 24. Jin M., Qian Z., Yin J., Xu W., Zhou X. The Role of Intestinal Microbiota in Cardiovascular Disease. J. Cell. Mol. Med., 2019, vol. 23, no. 4, pp. 2343–2350. https://doi.org/10.1111/jcmm.14195 25. Grigorieva I.N. Atherosclerosis and Trimethylamine-N-Oxide – the Gut Microbiota Potential. Russ. J. Cardiol., 2022, vol. 27, no. 9. Art. no. 5038 (in Russ.). https://doi.org/10.15829/1560-4071-2022-5038 26. Tang W.H., Li D.Y., Hazen S.L. Dietary Metabolism, the Gut Microbiome, and Heart Failure. Nat. Rev. Cardiol., 2019, vol. 16, no. 3, pp. 137–154. https://doi.org/10.1038/s41569-018-0108-7 27. Wallace B.D., Roberts A.B., Pollet R.M., Ingle J.D., Biernat K.A., Pellock S.J., Venkatesh M.K., Guthrie L., O’Neal S.K., Robinson S.J., Dollinger M., Figueroa E., McShane S.R., Cohen R.D., Jin J., Frye S.V., Zamboni W.C., Pepe-Ranney C., Mani S., Kelly L., Redinbo M.R. Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity. Chem. Biol., 2015, vol. 22, no. 9, pp. 1238–1249. https://doi.org/10.1016/j.chembiol.2015.08.005 28. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 2010, vol. 464, no. 7285, pp. 59–65. https://doi.org/10.1038/nature08821 29. Magne F., Gotteland M., Gauthier L., Zazueta A., Pesoa S., Navarrete P., Balamurugan R. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients, 2020, vol. 12, no. 5. Art. no. 1474. https://doi.org/10.3390/nu12051474 30. Harrison D.G. The Immune System in Hypertension. Trans. Am. Clin. Climatol. Assoc., 2014, vol. 125, pp. 130–140. 31. Pluznick J.L., Protzko R.J., Gevorgyan H., Peterlin Z., Sipos A., Han J., Brunet I., Wan L.-X., Rey F., Wang T., Firestein S.J., Yanagisawa M., Gordon J.I., Eichmann A., Peti-Peterdi J., Caplan M.J. Olfactory Receptor Responding to Gut Microbiota-Derived Signals Plays a Role in Renin Secretion and Blood Pressure Regulation. Proc. Natl. Acad. Sci. USA, 2013, vol. 110, no. 11, pp. 4410–4415. https://doi.org/10.1073/pnas.1215927110 32. Drapkina O.M., Kaburova A.N. Gut Microbiota Composition and Metabolites as the New Determinants of Cardiovascular Pathology Development. Ration. Pharmacother. Cardiol., 2020, vol. 16, no. 2, pp. 277–285. https://doi.org/10.20996/1819-6446-2020-04-02 33. Bulgakova S., Zakharova N., Romanchuk P. Gut Microbiota: A New Regulator of Cardiovascular Function. Bull. Sci. Pract., 2021, vol. 7, no. 1, pp. 200–222 (in Russ.). https://doi.org/10.33619/2414-2948/62/20 34. Drapkina O.M., Kaburova A.N. Gut Microbiota – a New Companion on the Path of Cardiovascular Diseases Progression: Surprising Roles of Long-Time Neighbors. Ration. Pharmacother. Cardiol., 2016, vol. 12, no. 1, pp. 66–71 (in Russ.). https://doi.org/10.20996/1819-6446-2016-12-1-66-71 35. Anisimova E.N., Ryazancev N.A., Raskurajev A.A., Tanashyan M.M., Philippova M.P., Sadulaev A.H., Labzenkova M.A. The Relationship of Inflammatory Diseases in the Oral Cavity and Cardiovascular System. Literature Review and Determining the Level of Dental Education. Parodontologiya, 2019, vol. 24, no. 4, pp. 301–307 (in Russ.). https://doi.org/10.33925/1683-3759-2019-24-4-301-307 36. Bain M.A., Fornasini G., Evans A.M. Trimethylamine: Metabolic, Pharmacokinetic and Safety Aspects. Curr. Drug Metab., 2005, vol. 6, no. 3, pp. 227–240. https://doi.org/10.2174/1389200054021807 37. Fei’erdun T., Zhang W., Yilihamujiang K., Zhang М., Wang M. Correlation Between Plasma Trimethylamine N-Oxide and Lipid Levels in Hyperlipidemic Patients. Sichuan Da Xue Xue Bao Yi Xue Ban, 2023, vol. 54, no. 5, pp. 1030–1034. https://doi.org/10.12182/20230960109 38. Huang Y., Zhang Н., Fan Х., Wang J., Yin Y., Zhang Y., Shi K., Yu F. The Role of Gut Microbiota and Trimethylamine N-Oxide in Cardiovascular Diseases. J. Cardiovasc. Transl. Res., 2023, vol. 16, no. 3, pp. 581–589. https://doi.org/10.1007/s12265-022-10330-0 39. Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly-Y M., Glickman J.N., Garrett W.S. The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science, 2013, vol. 341, no. 6145, pp. 569–573. https://doi.org/10.1126/science.1241165 40. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell, 2016, vol. 165, no. 6, pp. 1332–1345. https://doi.org/10.1016/j.cell.2016.05.041 41. Hu T., Wu Q., Yao Q., Jiang K., Yu J., Tang Q. Short-Chain Fatty Acid Metabolism and Multiple Effects on Cardiovascular Diseases. Ageing Res. Rev., 2022, vol. 81. Art. no. 101706. https://doi.org/10.1016/j.arr.2022.101706 42. Song M., Zhang Z., Li Y., Xiang Y., Li С. Midgut Microbiota Affects the Intestinal Barrier by Producing Short-Chain Fatty Acids in Apostichopus japonicus. Front. Microbiol., 2023, vol. 14. Art. no. 1263731. https://doi.org/10.3389/fmicb.2023.1263731 43. Zhang S., Zhou J., Wu W., Zhu Y., Liu Х. The Role of Bile Acids in Cardiovascular Diseases: From Mechanisms to Clinical Implications. Aging Dis., 2023, vol. 14, no. 2, pp. 261–282. https://doi.org/10.14336/AD.2022.0817 44. Guan B., Tong J., Hao H., Yang Z., Chen K., Xu H., Wang A. Bile Acid Coordinates Microbiota Homeostasis and Systemic Immunometabolism in Cardiometabolic Diseases. Acta Pharm. Sin. B, 2022, vol. 12, no. 5, pp. 2129–2149. https://doi.org/10.1016/j.apsb.2021.12.011 45. Lau K., Srivatsav V., Rizwan A., Nashed A., Liu R., Shen R., Akhtar M. Bridging the Gap Between Gut Microbial Dysbiosis and Cardiovascular Diseases. Nutrients, 2017, vol. 9, no. 8. Art. no. 859. https://doi.org/10.3390/nu9080859 46. Reshetova M.S., Zolnikova O.Yu., Ivashkin V.T., Ivashkin K.V., Appolonova S.A., Lapina T.L. Gut Microbiota and Its Metabolites in Pathogenesis of NAFLD. Russ. J. Gastroenterol. Hepatol. Coloproctol., 2022, vol. 32, no. 5, pp. 75–88. https://doi.org/10.22416/1382-4376-2022-32-5-75-88 47. Ye X., Li H., Anjum K., Zhong Х., Miao S., Zheng G., Liu W., Li L. Dual Role of Indoles Derived from Intestinal Microbiota on Human Health. Front. Immunol., 2022, vol. 13. Art. no. 903526. https://doi.org/10.3389/fimmu.2022.903526 48. Carnevale R., Nocella C., Petrozza V., Cammisotto V., Pacini L., Sorrentino V., Martinelli O., Irace L., Sciarretta S., Frati G., Pastori D., Violi F. Localization of Lipopolysaccharide from Escherichia сoli into Human Atherosclerotic Plaque. Sci. Rep., 2018, vol. 8, no. 1. Art. no. 3598. https://doi.org/10.1038/s41598-018-22076-4 49. Chervinets V.M., Chervinets Yu.V., Serova N.E., Yakovleva M.V., Stulov N.M., Voevodina V.A., Belyaev V.S., Smirnova L.E. Kliniko-mikrobiologicheskie osobennosti bol’nykh arterial’noy gipertenziey u zhiteley Tverskogo regiona [Clinical and Microbiological Features of Patients with Arterial Hypertension Among Residents of the Tver Region]. Sovremennye problemy nauki i obrazovaniya, 2019, no. 3. Available at: https://science-education.ru/ru/article/view?id=28791 (accessed: 11 November 2024). 50. Larabi A., Barnich N., Nguyen H.T.T. New Insights into the Interplay Between Autophagy, Gut Microbiota and Inflammatory Responses in IBD. Autophagy, 2020, vol. 16, no. 1, pp. 38–51. https://doi.org/10.1080/15548627.2019.1635384 51. Sircana A., De Michieli F., Parente R., Framarin L., Leone N., Berrutti M., Paschetta E., Bongiovanni D., Musso G. Gut Microbiota, Hypertension and Chronic Kidney Disease: Recent Advances. Pharmacol. Res., 2019, vol. 144, pp. 390–408. https://doi.org/10.1016/j.phrs.2018.01.013 52. Li C., Gao M., Zhang W., Chen C., Zhou F., Hu Z., Zeng C. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease. Sci. Rep., 2016, vol. 6. Art. no. 29142. https://doi.org/10.1038/srep29142 53. Blöbaum L., Witkowski M., Wegner M., Lammel S., Schencke P.-A., Jakobs K., Puccini M., Reißner D., Steffens D., Landmesser U., Rauch U., Friebel J. Intestinal Barrier Dysfunction and Microbial Translocation in Patients with First-Diagnosed Atrial Fibrillation. Biomedicines, 2023, vol. 11, no. 1. Art. no. 176. https://doi.org/10.3390/biomedicines11010176 54. Kunutsor S.K., Flores-Guerrero J.L., Kieneker L.M., Nilsen T., Hidden C., Sundrehagen E., Seidu S., Dullaart R.P.F., Bakker S.J.L. Plasma Calprotectin and Risk of Cardiovascular Disease: Findings from the PREVEND Prospective Cohort Study. Atherosclerosis, 2018, vol. 275, pp. 205–213. https://doi.org/10.1016/j.atherosclerosis.2018.06.817 55. Løfblad L., Hov G.G., Åsberg A., Videm V. Calprotectin and CRP as Biomarkers of Cardiovascular Disease Risk in Patients with Chronic Kidney Disease: A Follow-Up Study at 5 and 10 Years. Scand. J. Clin. Lab. Invest., 2023, vol. 83, no. 4, pp. 258–263. https://doi.org/10.1080/00365513.2023.2211779 56. Gulayev A.E., Sergazy Sh.D., Zhashkeyev A.K., Zhumadilov Zh.Sh., Abuova G.T. The Intestinal Microbiome as a Potential Target for the Development of Strategies for Reducing the Risk of Cardiovascular Events in Coronary Heart Disease. Farm. Kaz., 2022, vol. 122, no. 6, pp. 1627–1638. https://doi.org/10.53511/pharmkaz.2022.29.90.011 57. Yudin S.M., Egorova A.M., Makarov V.V. Analiz mikrobioty cheloveka. Rossiyskiy i zarubezhnyy opyt [Analysis of Human Microbiota. Russian and Foreign Experience]. Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy, 2018, no. 11-1, pp. 175–180. 58. Kaburova A.N., Drapkina O.M., Yudin S.M., Yafarova A.A., Koretsky S.N., Pokrovskaya M.S., Makarov V.V., Kraevoy S.A., Shoibonov B.B., Efimova I.A., Serebryanskaya Z.Z. The Relationship Between Gut Microbiota, Chronic Systemic Inflammation, and Endotoxemia in Patients with Heart Failure with Preserved Ejection Fraction. Cardiovasc. Ther. Prev., 2022, vol. 21, no. 9. Art. no. 3315 (in Russ.). https://doi.org/10.15829/1728-8800-2022-3315 59. Ardatskaya M.D. Rol’ pishchevykh volokon v korrektsii narusheniy mikrobioty i podderzhanii immuniteta [Role of Dietary Fiber in Correcting Microbiota Disorders and Maintaining Immunity]. Rossiyskiy meditsinskiy zhurnal, 2020, vol. 28, no. 12, pp. 24–29. 60. Ardatskaya M.D. Probiotiki, prebiotiki i metabiotiki v korrektsii mikroekologicheskikh narusheniy kishechnika [Probiotics, Prebiotics and Metabiotics in the Management of Microecological Bowel Disorders]. Meditsinskiy sovet, 2015, no. 13, pp. 94–99. 61. Gaus O.V., Livzan M.A. Pro- and Synbiotics in the Treatment of Intestinal Diseases: What Effects Can We Expect? Consilium medicum, 2020, vol. 22, no. 12, pp. 37–43 (in Russ.). https://doi.org/10.26442/20751753.2020.12.200309 62. Scott K.P., Antoine J.-M., Midtvedt Т., van Hemert S. Manipulating the Gut Microbiota to Maintain Health and Treat Disease. Microb. Ecol. Health Dis., 2015, vol. 26. Art. no. 25877. 63. Batacan R.B., Fenning A.S., Dalbo V.J., Scanlan A.T., Duncan M.J., Moore R.J., Stanley D. A Gut Reaction: The Combined Influence of Exercise and Diet on Gastrointestinal Microbiota in Rats. J. Appl. Microbiol., 2017, vol. 122, no. 6, pp. 1627–1638. https://doi.org/10.1111/jam.13442 64. Welly R.J., Liu T.-W., Zidon T.M., Rowles J.L. 3rd, Park Y.-M., Smith N.T., Swanson K.S., Padilla S., Vieira-Potter V.J. Comparison of Diet vs. Exercise on Metabolic Function and Gut Microbiota in Obese Rats. Med. Sci. Sports Exerc., 2016, vol. 48, no. 9, pp. 1688–1698. https://doi.org/10.1249/MSS.0000000000000964 65. Barton W., Penney N.C., Cronin O., Garcia-Perez I., Molloy M.G., Holmes E., Shanahan F., Cotter P.D., O’Sullivan O. The Microbiome of Professional Athletes Differs from That of More Sedentary Subjects in Composition and Particularly at the Functional Metabolic Level. Gut, 2018, vol. 67, no. 4, pp. 625–633. https://doi.org/10.1136/gutjnl-2016-313627 66. Allen J.M., Mailing L.J., Niemiro G.M., Moore R., Cook M.D., White B.A., Holscher H.D., Woods J.A. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans. Med. Sci. Sports Exerc., 2018, vol. 50, no. 4, pp. 747–757. https://doi.org/10.1249/MSS.0000000000001495 |
Make a Submission
INDEXED IN:
|