

Legal and postal addresses of the publisher: 56 Uritskogo, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/
|
Cytostatic Effect of a New Tropolone Derivative on the SW620 Colon Cancer Cell Line. С. 44-53
|
 |
Section: Biological sciences
Download
(pdf, 0.6MB )
UDC
616-006.6:57.085.2
DOI
10.37482/2687-1491-Z227
Abstract
Organic synthesis is a valuable source of promising antitumour drugs. The purpose of this paper was to study the cytotoxic effect of a new tropolone derivative 2-(1,1-dimethyl-1H-benzo[e]indolin-2-yl)-5,6, 7-trichloro-1,3-tropolone (JO-122) on the SW620 colon cancer cell line, compared with the standard chemotherapy drug 5-fluorouracil. Materials and methods. The research was conducted on a permanent colon adenocarcinoma cell line SW620. Cytotoxic activity of JO-122 was determined in an experiment with the construction of a dose– response curve; the number of living cells was measured indirectly using the MTT assay. The half inhibitory concentration (IC50) of the substance was further validated in the trypan blue test. Apoptosis in the SW620 cell culture was studied by assessing the morphological changes in cell nuclei stained with Hoechst 33342. Results. IC50 for JO-122 was 0.27 ± 0.07 mmol/l, which is almost 10 times less than for 5-fluorouracil (IC50(5-FU) = = 23.5 ± 3.5 mmol/l). In the trypan blue test, for a dose of 0.27 mmol/l we found a decrease in the number of living cells by 35 ± 7.2 %, while the proportion of dead cells was 12 ± 3.2 %. We assume that the mechanism of action of JO-122 on the SW620 culture is associated with a cell cycle arrest in the G0/G1 phase without the induction of apoptosis, which leads to a decrease in the proliferative activity of cells in the tested culture. Further studies are required to establish the mechanism of action of JO-122 on malignant cells.
Keywords
tropolone derivatives, colon cancer, SW620, new antitumour agents, anticancer chemotherapy, JO-122
References
- Kaprin A.D., Starinskiy V.V., Shakhzadova A.O. (eds.). Sostoyanie onkologicheskoy pomoshchi naseleniyu Rossii v 2021 godu [The State of Cancer Care for the Population of Russia in 2021]. Moscow, 2022. 239 p.
- Kit O.I., Gevorkyan Yu.A., Soldatkina N.V., Kolesnikov V.E., Bondarenko O.K., Khabzhokov E.K., Tolmakh R.E., Dashkov A.V., Petrov D.S., Savchenko D.A., Kolesnikov E.N., Snezhko A.V. Neposredstvennye i otdalennye rezul’taty lecheniya raka pryamoy kishki [Immediate and Long-Term Results of the Treatment of Patients with Rectal Cancer]. Sibirskiy onkologicheskiy zhurnal, 2023, vol. 22, no. 1, pp. 15–23. https://doi.org/10.21294/1814-4861-2023-22-1-15-23
- Longley D.B., Harkin D.P., Johnston P.G. 5-Fluorouracil: Mechanisms of Action and Clinical Strategies. Nat. Rev. Cancer, 2003, vol. 3, no. 5, pp. 330–338. https://doi.org/10.1038/nrc1074
- Kit O.I., Minkin V.I., Lukbanova E.A., Sayapin Yu.A., Gusakov E.A., Sitkovskaya A.O., Filippova S.Yu., Komarova E.F., Volkova A.V., Khodakova D.V., Mindar M.V., Lazutin Yu.N., Engibaryan M.A., Kolesnikov V.E. Evaluation of the Cytotoxic Activity and Toxicity of a Tropolone Derivative with a Potential Antitumor Effect. Bull. Sib. Med., 2022, vol. 21, no. 1, pp. 60–66. https://doi.org/10.20538/1682-0363-2022-2-60-66
- Gusakov E.A., Topchu I.A., Mazitova A.M., Dorogan I.V., Bulatov E.R., Serebriiskii I.G., Abramova Z.I., Tupaeva I.O., Demidov O.P., Toan D.N., Lam T.D., Bang D.N., Boumber Y.A., Sayapin Y.A., Minkin V.I. Design, Synthesis and Biological Evaluation of 2-Quinolyl-1,3-Tropolone Derivatives as New Anti-Cancer Agents. RSC Adv., 2021, vol. 11, no. 8, pp. 4555–4571. https://doi.org/10.1039/d0ra10610k
- Minkin V.I., Kit O.I., Goncharova A.S., Lukbanova E.A., Saiapin I.A., Gusakov E.A., Turkin I.N., Sitkovskaia A.O., Fillipova S.I., Leiman I.A., Lazutin I.N., Chubarian A.V., Pashchenko D.G., Tishchenko I.S. Agent Having Cytotoxic Activity on Non-Small-Cell Lung Cancer Cell Culture A 549. Patent RF no. 2741311, 2020. 9 p. (in Russ.).
- Zhang L., Peng Y., Uray I.P., Shen J., Wang L., Peng X., Brown P.H., Tu W., Peng G. Natural Product β-Thujaplicin Inhibits Homologous Recombination Repair and Sensitizes Cancer Cells to Radiation Therapy. DNA Repair (Amst.), 2017, vol. 60, pp. 89–101. https://doi.org/10.1016/j.dnarep.2017.10.009
- Li J., Falcone E.R., Holstein S.A., Anderson A.C., Wright D.L., Wiemer A.J. Novel α-Substituted Tropolones Promote Potent and Selective Caspase-Dependent Leukemia Cell Apoptosis. Pharmacol. Res., 2016, vol. 113, pt. A, pp. 438–448. https://doi.org/10.1016/j.phrs.2016.09.020
- Haney S.L., Allen C., Varney M.L., Dykstra K.M., Falcone E.R., Colligan S.H., Hu Q., Aldridge A.M., Wright D.L., Wiemer A.J., Holstein S.A. Novel Tropolones Induce the Unfolded Protein Response Pathway and Apoptosis in Multiple Myeloma Cells. Oncotarget, 2017, vol. 8, no. 44, pp. 76085–76098. https://doi.org/10.18632/oncotarget.18543
- Minkin V.I., Kit O.I., Saiapin I.A., Maksimov A.I., Goncharova A.S., Gusakov E.A., Tupaeva I.O., Krasnikova T.A., Kuznetsova N.S., Filippova S.I., Chembarova T.V. 2- (1,1-Dimethyl-1H-benzo[e]indolin-2-yl)-5,6,7-trichloro-1,3-tropolone, Which Has Cytotoxic Activity Against A431 Skin Cancer and H1299 Lung Cancer Cell Cultures. Patent RF no. 2810581, 2023. 8 p. (in Russ.).
- van Meerloo J., Kaspers G.J.L., Cloos J. Cell Sensitivity Assays: The MTT Assay. Methods Mol. Biol., 2011, vol. 731, pp. 237–245. https://doi.org/10.1007/978-1-61779-080-5_20
- Ritz C., Baty F., Streibig J.C., Gerhard D. Dose-Response Analysis Using R. PLoS One, 2015, vol. 10, no. 12. Art. no. e0146021. https://doi.org/10.1371/journal.pone.0146021
- Nakano K., Chigira T., Miyafusa T., Nagatoishi S., Caaveiro J.M., Tsumoto K. Discovery and Characterization of Natural Tropolones as Inhibitors of the Antibacterial Target CapF from Staphylococcus aureus. Sci. Rep., 2015, vol. 5. Art. no. 15337. https://doi.org/10.1038/srep15337
- Seo J.S., Choi Y.H., Moon J.W., Kim H.S., Park S.H. Hinokitiol Induces DNA Demethylation via DNMT1 and UHRF1 Inhibition in Colon Cancer Cells. BMC Cell Biol., 2017, vol. 18, no. 1. Art. no. 14. https://doi.org/10.1186/s12860-017-0130-3
- Komarova E.F., Lukbanova E.A., Dzhenkova E.A., Goncharova A.S., Zaikina E.V., Gurova S.V., Galina A.V., Kurbanova L.K., Mindar M.V., Khodakova D.V., Gusareva M.S., Zinkovich M.S. Immunohistochemical Assessment of Possible Anticancer Effect Mechanisms of 2- (6,8-dimethyl-5-nitro-4-chloroquinoline-2-yl)-5,6,7-trichloro-1,3-tropolone in PDX Models of Lung Cancer. South Russ. J. Cancer, 2023, vol. 4, no. 1, pp. 6–13. https://doi.org/10.37748/2686-9039-2023-4-1-1
- Verza F.A., Das U., Fachin A.L., Dimmock J.R., Marins M. Roles of Histone Deacetylases and Inhibitors in Anticancer Therapy. Cancers (Basel), 2020, vol. 12, no. 6. Art. no. 1664. https://doi.org/10.3390/cancers12061664
- Yang P.-S., Wang M.-J., Jayakumar T., Chou D.-S., Ko C.-Y., Hsu M.-J., Hsieh C.-Y. Antiproliferative Activity of Hinokitiol, a Tropolone Derivative, Is Mediated via the Inductions of p-JNK and p-PLCγ1 Signaling in PDGF-BB-Stimulated Vascular Smooth Muscle Cells. Molecules, 2015, vol. 20, no. 5, pp. 8198–8212. https://doi.org/10.3390/molecules20058198
|
Make a Submission







Vestnik of NArFU.
Series "Humanitarian and Social Sciences"
Forest Journal
Arctic and North
|