CC..png    

16plus.png

Legal and postal addresses of the publisher: 56 Uritskogo, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Anhidrotic Ectodermal Dysplasia in a Child Due to a Rare Mutation in the EDA Gene (a Clinical Case). С. 81-90

Версия для печати

Section: Medical and biological sciences

Download (pdf, 1.6MB )

UDC

[616-007.17+575.224.22]:616.314.9

DOI

10.37482/2687-1491-Z231

Authors

Sergey N. Levitskiy* ORCID: https://orcid.org/0000-0003-2588-620X
Tatyana Yu. Gagarina*/** ORCID: https://orcid.org/0000-0003-3071-4146
Nadezhda G. Davydova* ORCID: https://orcid.org/0000-0002-0700-4261

*Northern State Medical University
(Arkhangelsk, Russia)
**Severodvinsk Dental Clinic
(Severodvinsk, Russia)

Abstract

Anhidrotic ectodermal dysplasia is а heterogenous genetic disorder with multiple clinical manifestations. In medical examinations, including dental examinations, the differential aspect of diagnosis is important, since many forms of the disease have similar clinical manifestations. Of particular interest are the phenotypic effects of genetic mutations and numerous polymorphic variations of candidate genes for ectodermal dysplasia. The purpose of this study was to describe and analyse a clinical case of a patient with complete anodontia of deciduous teeth, partial anodontia of tooth buds of permanent teeth, impaired tooth formation and abnormal tooth shape due to anhidrotic ectodermal dysplasia as a result of a rare mutation in the ectodysplasin A (EDA) gene. Materials and methods. We analysed the phenotype of a male 19-month-old patient with dental pathology as a result of a disease caused by the presence of the polymorphic A allele of the EDA gene in the genotype. Further, this variation was analysed and its clinical significance was determined using the following databases: PubMed, eLIBRARY.RU, dbSNP, HGMD, GenBank, MutationTaster, PolyPhen-2, PROVEAN, and SIFT. Results. There is practically no data on the clinical significance of the c.1043C>A (р.Thr348Asn) polymorphism of the EDA gene; however the presence of clinical manifestations of the phenotype of anhidrotic ectodermal dysplasia in the patient suggests a negative effect of this single-nucleotide substitution. The described clinical case with a rare genetic disorder in dental practice is of undoubted interest to practitioners, as this pathology requires a comprehensive medical approach, long-term treatment and rehabilitation.

Keywords

anhidrotic ectodermal dysplasia, anodontia, abnormalities of teeth and jaws, EDA gene, single-nucleotide substitution

References

  1. Bala M., Pathak A. Ectodermal Dysplasia with True Anodontia. J. Oral Maxillofac. Pathol., 2011, vol. 15, no. 2, pp. 244–246. https://doi.org/10.4103/0973-029x.84515
  2. Zhang L., Yu M., Wong S.-W., Qu H., Cai T., Liu Y., Liu H., Fan Z., Zheng J., Zhou Y., Feng H., Han D. Comparative Analysis of Rare EDAR Mutations and Tooth Agenesis Pattern in EDAR- and EDA-Associated Nonsyndromic Oligodontia. Hum. Mutat., 2020, vol. 41, no. 11, pp. 1957–1966. https://doi.org/10.1002/humu.24104
  3. Lan R., Wu Y., Dai Q., Wang F. Gene Mutations and Chromosomal Abnormalities in Syndromes with Tooth Agenesis. Oral Dis., 2023, vol. 29, no. 6, pp. 2401–2408. https://doi.org/10.1111/odi.14402
  4. Gamayunov B.N., Vasilyev G.S., Pekareva N.A., Shubina E., Goltsov A.Yu. Ectodermal Dysplasia in a Child with Hypotrichosis, Scalp Erosion and Atresia of Lacrimal Points. Russ. J. Clin. Dermatol. Venereol., 2020, vol. 19, no. 6, pp. 899–903 (in Russ.). https://doi.org/10.17116/klinderma202019061899
  5. Smerdina Yu.G., Smerdina L.N. Genezis i klinika ektodermal’noy displazii angidroticheskoy (sindrom Krista– Simensa–Turena) [Genesis and Clinical Features of Anhidrotic Ectodermal Dysplasia (Christ–Siemens–Touraine Syndrome)]. Uspekhi sovremennogo estestvoznaniya, 2008, no. 5, pp. 138–139.
  6. Torgashina A.G., Firsova I.V. Simptomokompleks ektodermal’noy displazii v klinike stomatologii [Symptom Complex of Ectodermal Dysplasia in Dental Symptomatology]. Byulleten’ meditsinskikh Internet‐konferentsiy, 2013, vol. 3, no. 3, pp. 745–747.
  7. Eismann H., Knauer K., Künzel W., Müller M., Müller W. Störungen der Dentition und Zahnentwicklung. Kinderstomatologie. Leipzig, 1988, pp. 136–139.
  8. Zonana J., Elder M.E., Schneider L.C., Orlow S.J., Moss C., Golabi M., Shapira S.K., Farndon P.A., Wara D.W., Emmal S.A., Ferguson B.M. A Novel X-Linked Disorder of Immune Deficiency and Hypohidrotic Ectodermal Dysplasia Is Allelic to Incontinentia Pigmenti and Due to Mutations in IKK-Gamma (NEMO). Am. J. Hum. Genet., 2000, vol. 67, no. 6, pp. 1555–1562. https://doi.org/10.1086/316914
  9. McGrath J.A., Duijf P.H., Doetsch V., Irvine A.D., de Waal R., Vanmolkot K.R., Wessagowit V., Kelly A., Atherton D.J., Griffiths W.A., Orlow S.J., van Haeringen A., Ausems M.G., Yang A., McKeon F., Bamshad M.A., Brunner H.G., Hamel B.C., van Bokhoven H. Hay–Wells Syndrome Is Caused by Heterozygous Missense Mutations in the SAM Domain of p63. Hum. Mol. Genet., 2001, vol. 10, no. 3, pp. 221–229. https://doi.org/10.1093/hmg/10.3.221
  10. Rinne T., Hamel B., van Bokhoven H., Brunner H.G. Pattern of p63 Mutations and Their Phenotypes – Update. Am. J. Med. Genet. A, 2006, vol. 140, no. 13, pp. 1396–1406. https://doi.org/10.1002/ajmg.a.31271
  11. Zelenova M.A., Vorsanova S.G., Yurov Yu.B., Kurinnaya O.S., Voinova V.Yu., Yurov I.Yu. Duplikatsiya gena EDA u mal’chika s rasstroystvom autisticheskogo spektra i zaderzhkoy razvitiya: molekulyarno-tsitogeneticheskoe, bioinformaticheskoe i psikhologicheskoe issledovanie redkoy genomnoy patologii [Duplication of EDA Gene in a Boy with Autism Spectrum Disorder and Developmental Delay: Molecular Cytogenetic, Bioinformatic and Psychological Investigation of Rare Genomic Pathology]. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy, 2017, no. 7-1, pp. 97–101.
  12. Gaide O., Schneider P. Permanent Correction of an Inherited Ectodermal Dysplasia with Recombinant EDA. Nat. Med., 2003, vol. 9, no. 5, pp. 614–618. https://doi.org/10.1038/nm861
  13. Filippova V.V., Neretina I.A., Matveeva E.A., Ershova N.M. Angidroticheskaya ektodermal’naya displaziya. Sindrom Krista–Simensa–Turena. Diagnosticheskaya odisseya [Anhidrotic Ectodermal Dysplasia. Christ–Siemens– Touraine Syndrome. Diagnostic Odyssey]. Zdravookhranenie Dal’nego Vostoka, 2023, no. 4, pp. 17–22.
  14. Muzychina A.A., Bugorkova I.A., Tutova K.S., Muzychina A.V. Sindrom Krista–Simensa–Turena u rebenka (klinicheskiy sluchay) [Christ–Siemens–Touraine Syndrome in a Child (Case Report)]. Meditsinsko-sotsial’nye problemy sem’i, 2019, vol. 24, no. 2, pp. 117–120.
  15. Mikkola M.L., Thesleff I. Ectodysplasin Signaling in Development. Cytokine Growth Factor Rev., 2003, vol. 14, no. 3–4, pp. 211–224. https://doi.org/10.1016/s1359-6101(03)00020-0
  16. Coe B.P., Witherspoon K., Rosenfeld J.A., van Bon B.W., Vulto-van Silfhout A.T., Bosco P., Friend K.L., Baker C., Buono S., Vissers L.E., et al. Refining Analyses of Copy Number Variation Identifies Specific Genes Associated with Developmental Delay. Nat. Genet., 2014, vol. 46, no. 10, pp. 1063–1071. https://doi.org/10.1038/ng.3092
  17. Vorsanova S.G., Yurov Y.B., Iourov I.Y. Neurogenomic Pathway of Autism Spectrum Disorders: Linking Germline and Somatic Mutations to Genetic-Environmental Interactions. Curr. Bioinform., 2017, vol. 12, no. 1, pp. 19–26. http://dx.doi.org/10.2174/1574893611666160606164849
  18. Kovalskaia V.A., Cherevatova T.B., Polyakov A.V., Ryzhkova O.P. Molecular Basis and Genetics of Hypohidrotic Ectodermal Dysplasias. Vavilov J. Genet. Breed., 2023, vol. 27, no. 6, pp. 676–683. https://doi.org/10.18699/VJGB-23-78
  19. Yu K., Sheng Y., Wang F., Yang S., Wan F., Lei M., Wu Y. Eight EDA Mutations in Chinese Patients with Tooth Agenesis and Genotype–Phenotype Analysis. Oral Dis., 2024, vol. 30, no. 7, pp. 4598–4607. https://doi.org/10.1111/odi.14878
  20. Ranjan P., Das P. Understanding the Impact of Missense Mutations on the Structure and Function of the EDA Gene in X-Linked Hypohidrotic Ectodermal Dysplasia: A Bioinformatics Approach. J. Cell. Biochem., 2022, vol. 123, no. 2, pp. 431–449. https://doi.org/10.1002/jcb.30186
  21. Gökdere S., Schneider H., Hehr U., Willen L., Schneider P., Maier-Wohlfart S. Functional and Clinical Analysis of Five EDA Variants Associated with Ectodermal Dysplasia but with a Hard-to-Predict Significance. Front. Genet., 2022, vol. 13. Art. no. 934395. https://doi.org/10.3389/fgene.2022.934395
  22. Bao D.-Y., Yang Y., Tong X., Qin H.-Y. Activation of Wnt/β-Catenin Signaling Pathway Down Regulated Osteogenic Differentiation of Bone Marrow-Derived Stem Cells in an Anhidrotic Ectodermal Dysplasia Patient with EDA/ EDAR/EDARADD Mutation. Heliyon, 2023, vol. 10, no. 1. Art. no. e23057. https://doi.org/10.1016/j.heliyon.2023.e23057
  23. Wohlfart S., Hammersen J., Schneider H. Mutational Spectrum in 101 Patients with Hypohidrotic Ectodermal Dysplasia and Breakpoint Mapping in Independent Cases of Rare Genomic Rearrangements. J. Hum. Genet., 2016, vol. 61, no. 10, pp. 891–897. https://doi.org/10.1038/jhg.2016.75
  24. Yu K., Huang C., Wan F., Jiang C., Chen J., Li X., Wang F., Wu J., Lei M., Wu Y. Structural Insights into Pathogenic Mechanism of Hypohidrotic Ectodermal Dysplasia Caused by Ectodysplasin A Variants. Nat. Commun., 2023, vol. 14, no. 1. Art. no. 767. https://doi.org/10.1038/s41467-023-36367-6
  25. Zhao Z., Zhang T., Li T., Ye Y., Feng C., Wang H., Zhang X. A Novel EDAR Variant Identified in Non-Syndromic Tooth Agenesis: Insights from Molecular Dynamics. Arch. Oral Biol., 2023, vol. 146. Art. no. 105600. https://doi.org/10.1016/j.archoralbio.2022.105600
  26. Gao Y., Jiang X., Wei Z., Long H., Lai W. The EDA/EDAR/NF-κB Pathway in Non-Syndromic Tooth Agenesis: A Genetic Perspective. Front. Genet., 2023, vol. 14. Art. no. 1168538. https://doi.org/10.3389/fgene.2023.1168538
  27. Wright J.T., Fete M., Schneider H., Zinser M., Koster M.I., Clarke A.J., Hadj-Rabia S., Tadini G., Pagnan N., Visinoni A.F., Bergendal B., Abbott B., Fete T., Stanford C., Butcher C., D’Souza R.N., Sybert V.P., Morasso M.I. Ectodermal Dysplasias: Classification and Organization by Phenotype, Genotype and Molecular Pathway. Am. J. Med. Genet. A, 2019, vol. 179, no. 3, pp. 442–447. https://doi.org/10.1002/ajmg.a.61045
  28. Adhikari K., Fontanil T., Cal S., Mendoza-Revilla J., Fuentes-Guajardo M., Chacón-Duque J.-C., Al-Saadi F., Johansson J.A., Quinto-Sanchez M., Acuña-Alonzo V., et al. A Genome-Wide Association Scan in Admixed Latin Americans Identifies Loci Influencing Facial and Scalp Hair Features. Nat. Commun., 2016, vol. 7. Art. no. 10815. https://doi.org/10.1038/ncomms10815
  29. Wu S., Zhang M., Yang X., Peng F., Zhang J., Tan J., Yang Y., Wang L., Hu Y., Peng Q., Li J., Liu Y., Guan Y., Chen C., Hamer M.A., Nijsten T., Zeng C., Adhikari K., Gallo C., Poletti G., Schuler-Faccini L., Bortolini M.C., Canizales-Quinteros S., Rothhammer F., Bedoya G., González-José R., Li H., Krutmann J., Liu F., Kayser M., Ruiz-Linares A., Tang K., Xu S., Zhang L., Jin L., Wang S. Genome-Wide Association Studies and CRISPR/Cas9-Mediated Gene Editing Identify Regulatory Variants Influencing Eyebrow Thickness in Humans. PLoS Genet., 2018, vol. 14, no. 9. Art. no. 1007640. https://doi.org/10.1371/journal.pgen.1007640
  30. Ponomarenko I.V. Otbor polimorfnykh lokusov dlya analiza assotsiatsiy pri genetiko-epidemiologicheskikh issledovaniyakh [Selection of Polymorphic Loci for Association Analysis in Genetic-Epidemiological Studies]. Nauchnyy rezul’tat. Meditsina i farmatsiya, 2018, vol. 4, no. 2, pp. 40–54. https://doi.org/10.18413/2313-8955-2018-4-2-0-5



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
obl_les2023.jpg 

Arctic and North  

AiS.jpg