

Legal and postal addresses of the publisher: 56 Uritskogo, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov
Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/
|
Von Willebrand Factor as a Marker of Inflammation and Haemostasis (Review). С. 91-103
|
 |
Section: Review articles
Download
(pdf, 0.5MB )
UDC
616-005.1
DOI
10.37482/2687-1491-Z232
Abstract
The review presents an analysis of literature data on the role of von Willebrand factor (VWF) in the system of haemostasis and inflammation as well as provides a pathophysiological assessment of the influence of VWF interaction with pathogenic microbiological agents on its metabolism and of the role of the metalloproteinase ADAMTS-13 in this process. The structure, functions and metabolism of VWF in pathological conditions are described. Data are presented indicating that the release of VWF from endothelial cells promotes the binding and decrease in the activity of ADAMTS-13, which regulates the functional activity of VWF. This, in turn, leads to the accumulation of ultralarge VWF multimers in the bloodstream, inducing the development of thrombosis. It is noted that biologically active substances involved in pathological processes act as stimulators of VWF exocytosis from Weibel–Palade bodies, which results in the development of microcirculatory disorders. The review aimed to assess the importance of VWF in the pathogenesis of inflammatory and thrombotic disorders. The sample consisted of original articles and short reports published from 2005 to 2022 and included in the PubMed, eLIBRARY.RU and Cyberleninka databases and addressing the pathophysiological role of VWF in maintaining systemic inflammation. The following search and selection strategy for scientific articles was applied using MeSH-indexed terms: von Willebrand factor [Supplementary Concept], ADAMTS-13 [MeSH Terms], systemic inflammation [MeSH Terms], and thrombotic disorders [MeSH Terms]. The analysis of scientific publications allows us to consider VWF as a marker of both haemostasis and inflammation. The influence of infectious agents on its metabolism is pointed out: during inflammation, bacteria associated with VWF multimers overcome the haemodynamic effects of the bloodstream, evade the immune cells and become fixed on the surface of the endothelium, causing endovascular disorders.
Keywords
von Willebrand factor, Weibel–Palade bodies, ADAMTS-13, immunothrombosis, systemic inflammation
References
- Sokolov E.I., Grishina T.I., Shtin S.R. Vliyanie faktora Villebranda i endotelina-1 na formirovanie tromboticheskogo statusa pri ishemicheskoy bolezni serdtsa [Effect of von Willebrand Factor and Endothelin-1 on Formation of Thrombotic Status in Patients with Ischemic Heart Disease]. Kardiologiya, 2013, vol. 53, no. 3, pp. 25–30.
- Avtaeva Yu.N., Melnikov I.S., Vasiliev S.A., Gabbasov Z.A. The Role of von Willebrand Factor in Hemostasis Pathology. Atherothrombosis, 2022, vol. 12, no. 2, pp. 79–102 (in Russ.). https://doi.org/10.21518/2307-1109-2022-12-2-79-102
- Margieva T., Sergeeva T. The Involvement of Endothelial Dysfunction Markers in the Pathogenesis of Chronic Glomerulonephritis. Curr. Pediatr., 2006, vol. 5, no. 3, pp. 22–30 (in Russ.).
- Verigo Ya.I., Demko I.V., Petrova M.M., Sobko E.A., Mamaeva M.G. Faktor Villebranda i ego rol’ v disfunktsii endoteliya pri ishemicheskoy bolezni serdtsa [Von Willebrand Factor and Its Role in Endothelial Dysfunction in Coronary Heart Disease]. Sibirskoe meditsinskoe obozrenie, 2014, no. 5, pp. 23–25.
- Gragnano F., Sperlongano S., Golia E., Natale F., Bianchi R., Crisci M., Fimiani F., Pariggiano I., Diana V., Carbone A., Cesaro A., Concilio C., Limongelli G., Russo M., Calabrò P. The Role of von Willebrand Factor in Vascular Inflammation: From Pathogenesis to Targeted Therapy. Mediat. Inflamm., 2017, vol. 2017, no. 1. Art. no. 5620314. https://doi.org/10.1155/2017/5620314
- De Ceunynck K., De Meyer S.F., Vanhoorelbeke K. Unwinding the von Willebrand Factor Strings Puzzle. Blood, 2013, vol. 121, no. 2, pp. 270–277. https://doi.org/10.1182/blood-2012-07-442285
- Kozlovskaya N.L., Khafizova E.Yu., Bobrova L.A., Bobkova I.N., Kuchieva A.M., Varshavskiy V.A., Stolyarevich E.S., Avdonin P.V., Zakharova E.V. Rol’ defitsita ADAMTS13 v razvitii trombozov mikrotsirkulyatornogo rusla pochek, ne assotsiirovannykh s tromboticheskoy trombotsitopenicheskoy purpuroy [The Role of ADAMTS13 Deficiency in the Development of Renal Microcirculation Thrombosis Not Associated with Thrombotic Thrombocytopenic Purpura]. Klinicheskaya nefrologiya, 2011, no. 6, pp. 25–31.
- Favaloro E.J., Henry B.M., Lippi G. Increased VWF and Decreased ADAMTS-13 in COVID-19: Creating a Milieu for (Micro)Thrombosis. Semin. Thromb. Hemost., 2021, vol. 47, no. 4, pp. 400–418. https://doi.org/10.1055/s-0041-1727282
- Babichev A.V. Rol’ endoteliya v mekhanizmakh gemostaza [The Role of Endothelium in Hemostasis Mechanisms]. Pediatr, 2013, vol. 4, no. 1, pp. 122–127.
- Avdonin P.V., Tsitrina A.A., Mironova G.Y., Avdonin P.P., Zharkikh I.L., Nadeev A.D., Goncharov N.V. Hydrogen Peroxide Stimulates Exocytosis of von Willebrand Factor in Human Umbilical Vein Endothelial Cells. Biol. Bull., 2017, vol. 44, no. 5, pp. 531–537. https://doi.org/10.1134/S106235901705003X
- Dal Lin C., Acquasaliente L., Iliceto S., De Filippis V., Vitiello G., Tona F. Von Willebrand Factor Multimers and the Relaxation Response: A One-Year Study. Entropy (Basel), 2021, vol. 23, no. 4. Art. no. 447. https://doi.org/10.3390/e23040447
- Divakova Yu.V., Koloskov A.V. Endothelial-Platelet Interaction in Sepsis. Gematologiya i transfuziologiya, 2022, vol. 67, no. 3, pp. 406–418 (in Russ.). https://doi.org/10.35754/0234-5730-2022-67-3-406-418
- Okhota S.D., Kozlov S.G., Avtaeva Yu.N., Mel’nikov I.S., Gabbasov Z.A. Faktor fon Villebranda i serdechnososudistaya patologiya [Von Willebrand Factor and Cardiovascular Pathology]. Ateroskleroz i dislipidemii, 2022, no. 4, pp. 10–24. https://doi.org/10.34687/2219-8202.JAD.2022.04.0002
- Khlynova O.V., Stepina E.A., Trapeznikova A.A. Vospalitel’nye zabolevaniya kishechnika i kardiovaskulyarnaya patologiya: patogeneticheskie vzaimosvyazi i vozrastnye osobennosti [Inflammatory Bowel Diseases and Cardiovascular Pathology: Pathogenetic Correlations and Age-Related Peculiarities]. Terapiya, 2022, no. 7, pp. 54–58. https://doi.org/10.18565/therapy.2022.7.54-58
- Chen J., Fu X., Wang Y., Ling M., McMullen B., Kulman J., Chung D.W., López J.A. Oxidative Modification of von Willebrand Factor by Neutrophil Oxidants Inhibits Its Cleavage by ADAMTS13. Blood, 2010, vol. 115, no. 3, pp. 706–712. https://doi.org/10.1182/blood-2009-03-213967
- Wang Y., Chen J., Ling M., López J.A., Chung D.W., Fu X. Hypochlorous Acid Generated by Neutrophils Inactivates ADAMTS13: An Oxidative Mechanism for Regulating ADAMTS13 Proteolytic Activity During Inflammation. J. Biol. Chem., 2015, vol. 290, no. 3, pp. 1422–1431. https://doi.org/10.1074/jbc.M114.599084
- Karki P., Birukov K.G. Rho and Reactive Oxygen Species at Crossroads of Endothelial Permeability and Inflammation. Antioxid. Redox Signal., 2019, vol. 31, no. 13, pp. 1009–1022. https://doi.org/10.1089/ars.2019.7798
- Avdonin P.P., Trufanov S.K., Tsitrina A.A., Rybakova E.Yu., Goncharov N.V., Avdonin P.V. Ispol’zovanie kon”yugirovannogo c fluorestsentnoy metkoy aptamera ARC1779 dlya otsenki vliyaniya H2O2 na ekzotsitoz faktora Villebranda [The Use of Fluorescently Labeled ARC1779 Aptamer for Assessing the Effect of H2O2 оn von Willebrand Factor Exocytosis]. Biokhimiya, 2021, vol. 87, no. 2, pp. 147–157. https://doi.org/10.31857/S0320972521020019
- Schwameis M., Schörgenhofer C., Assinger A., Steiner M.M., Jilma B. VWF Excess and ADAMTS13 Deficiency: A Unifying Pathomechanism Linking Inflammation to Thrombosis in DIC, Malaria, and TTP. Thromb. Haemost., 2015, vol. 113, no. 4, pp. 708–718. https://doi.org/10.1160/TH14-09-0731
- Reiter R.A., Varadi K., Turecek P.L., Jilma B., Knöbl P. Changes in ADAMTS13 (von-Willebrand-Factor-Cleaving Protease) Activity After Induced Release of von Willebrand Factor During Acute Systemic Inflammation. Thromb. Haemost., 2005, vol. 93, no. 3, pp. 554–558. https://doi.org/10.1160/TH04-08-0467
- Kremer Hovinga J.A., Zeerleder S., Kessler P., Romani de Wit T., van Mourik J.A., Hack C.E., ten Cate H., Reitsma P.H., Wuillemin W.A., Lämmle B. ADAMTS‐13, von Willebrand Factor and Related Parameters in Severe Sepsis and Septic Shock. J. Thromb. Haemost., 2007, vol. 5, no. 11, pp. 2284–2290. https://doi.org/10.1111/j.1538-7836.2007.02743.x
- Bockmeyer C.L., Claus R.A., Budde U., Kentouche K., Schneppenheim R., Lösche W., Reinhart K., Brunkhorst F.M. Inflammation-Associated ADAMTS13 Deficiency Promotes Formation of Ultra-Large von Willebrand Factor. Haematologica, 2008, vol. 93, no. 1, pp. 137–140. https://doi.org/10.3324/haematol.11677
- Bernardo A., Ball C., Nolasco L., Choi H., Moake J.L., Dong J.F. Platelets Adhered to Endothelial Cell-Bound Ultra-Large von Willebrand Factor Strings Support Leukocyte Tethering and Rolling Under High Shear Stress. J. Thromb. Haemost., 2005, vol. 3, no. 3, pp. 562–570. https://doi.org/10.1111/j.1538-7836.2005.01122.x
- Lyanguzov A.V., Sergunina O.Yu., Ignat’ev S.V., Kovtunova M.E., Kalinina S.L., Semakin A.S. Rol’ faktora fon Villebranda v razvitii sistemnogo vospaleniya, koagulopatii i organnykh disfunktsiy [The Role of von Willebrand Factor in the Development of Systemic Inflammation, Coagulopathy and Organ Dysfunctions]. Tromboz, gemostaz i reologiya, 2021, no. 3, pp. 4–11. https://doi.org/10.25555/THR.2021.3.0979
- Odintsova I.A., Mirgorodskaya O.E., Rusakova S.E., Gorbulich A.V., Gololobov V.G. Neutrophil Extracellular Traps: Structure and Biological Role. Genes Cells, 2022, vol. 17, no. 4, pp. 63–74 (in Russ.). https://doi.org/10.23868/gc352562
- Ward C.M., Tetaz T.J., Andrews R.K., Berndt M.C. Binding of the von Willebrand Factor A1 Domain to Histone. Thromb. Res., 1997, vol. 86, no. 6, pp. 469–477. https://doi.org/10.1016/S0049-3848(97)00096-0
- Brill A., Fuchs T.A., Savchenko A.S., Thomas G.M., Martinod K., De Meyer S.F., Bhandari A.A., Wagner D.D. Neutrophil Extracellular Traps Promote Deep Vein Thrombosis in Mice. J. Thromb. Haemost., 2012, vol. 10, no. 1, pp. 136–144. https://doi.org/10.1111/j.1538-7836.2011.04544.x
- Fuchs T.A., Brill A., Duerschmied D., Schatzberg D., Monestier M., Myers D.D. Jr., Wrobleski S.K., Wakefield T.W., Hartwig J.H., Wagner D.D. Extracellular DNA Traps Promote Thrombosis. Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 36, pp. 15880–15885. https://doi.org/10.1073/pnas.1005743107
- Turner N.A., Moake J. Assembly and Activation of Alternative Complement Components on Endothelial Cell-Anchored Ultra-Large von Willebrand Factor Links Complement and Hemostasis-Thrombosis. PLoS One, 2013, vol. 8, no. 3. Art. no. e59372. https://doi.org/10.1371/journal.pone.0059372
- Feng S., Liang X., Kroll M.H., Chung D.W., Afshar-Kharghan V. Von Willebrand Factor Is a Cofactor in Complement Regulation. Blood, 2015, vol. 125, no. 6, pp. 1034–1037. https://doi.org/10.1182/blood-2014-06-585430
- Bettoni S., Galbusera M., Gastoldi S., Donadelli R., Tentori C., Spartà G., Bresin E., Mele C., Alberti M., Tortajada A., Yebenes H., Remuzzi G., Noris M. Interaction Between Multimeric von Willebrand Factor and Complement: A Fresh Look to the Pathophysiology of Microvascular Thrombosis. J. Immunol., 2017, vol. 199, no. 3, pp. 1021–1040. https://doi.org/10.4049/jimmunol.1601121
- Wu H., Jay L., Lin S., Han C., Yang S., Cataland S.R., Masias C. Interrelationship Between ADAMTS13 Activity, von Willebrand Factor, and Complement Activation in Remission from Immune-Mediated Thrombotic Thrombocytopenic Purpura. Br. J. Haematol., 2020, vol. 189, no. 1, pp. e18–e20. https://doi.org/10.1111/bjh.16415
- Nolasco J.G., Nolasco L.H., Da Q., Cirlos S., Ruggeri Z.M., Moake J.L., Cruz M.A. Complement Component C3 Binds to the A3 Domain of von Willebrand Factor. TH Open, 2018, vol. 2, no. 3, pp. e338–e345. https://doi.org/10.1055/s-0038-1672189
- Rawish E., Sauter M., Sauter R., Nording H., Langer H.F. Complement, Inflammation and Thrombosis. Br. J. Pharmacol., 2021, vol. 178, no. 14, pp. 2892–2904. https://doi.org/10.1111/bph.15476
- Gianni P., Goldin M., Ngu S., Zafeiropoulos S., Geropoulos G., Giannis D. Complement-Mediated Microvascular Injury and Thrombosis in the Pathogenesis of Severe COVID-19: A Review. World J. Exp. Med., 2022, vol. 12, no. 4, pp. 53–67. https://doi.org/10.5493/wjem.v12.i4.53
- Avdonin P.P., Tsvetaeva N.V., Goncharov N.V., Rybakova E.Yu., Trufanov S.K., Tsitrina A.A., Avdonin P.V. Faktor Villebranda v norme i pri patologii [Von Willebrand Factor in Health and Disease]. Biologicheskie membrany, 2021, vol. 38, no. 4, pp. 237–256. https://doi.org/10.31857/S0233475521040034
- Lüttge M., Fulde M., Talay S.R., Nerlich A., Rohde M., Preissner K.T., Hammerschmidt S., Steinert M., Mitchell T.J., Chhatwal G.S., Bergmann S. Streptococcus pneumoniae Induces Exocytosis of Weibel-Palade Bodies in Pulmonary Endothelial Cells. Cell. Microbiol., 2012, vol. 14, no. 2, pp. 210–225. https://doi.org/10.1111/j.1462-5822.2011.01712.x
- Jagau H., Behrens I.-K., Lahme K., Lorz G., Köster R.W., Schneppenheim R., Obser T., Brehm M.A., König G., Kohler T.P., Rohde M., Frank R., Tegge W., Fulde M., Hammerschmidt S., Steinert M., Bergmann S. Von Willebrand Factor Mediates Pneumococcal Aggregation and Adhesion in Blood Flow. Front. Microbiol., 2019, vol. 10. Art. no. 511. https://doi.org/10.3389/fmicb.2019.00511
- Freitas C., Assis M.-C., Saliba A.M., Morandi V.M., Figueiredo C.C., Pereira M., Plotkowski M.-C. The Infection of Microvascular Endothelial Cells with ExoU-Producing Pseudomonas aeruginosa Triggers the Release of von Willebrand Factor and Platelet Adhesion. Mem. Inst. Oswaldo Cruz, 2012, vol. 107, no. 6, pp. 728–734. https://doi.org/10.1590/S0074-02762012000600004
- Pappelbaum K.I., Gorzelanny C., Grässle S., Suckau J., Laschke M.W., Bischoff M., Bauer C., Schorpp-Kistner M., Weidenmaier C., Schneppenheim R., Obser T., Sinha B., Schneider S.W. Ultralarge von Willebrand Factor Fibers Mediate Luminal Staphylococcus aureus Adhesion to an Intact Endothelial Cell Layer Under Shear Stress. Circulation, 2013, vol. 128, no. 1, pp. 50–59. https://doi.org/10.1161/CIRCULATIONAHA.113.002008
- Na M., Hu Z., Mohammad M., Stroparo M.D.N., Ali A., Fei Y., Jarneborn A., Verhamme P., Schneewind O., Missiakas D., Jin T. The Expression of von Willebrand Factor-Binding Protein Determines Joint-Invading Capacity of Staphylococcus aureus, a Core Mechanism of Septic Arthritis. mBio, 2020, vol. 11, no. 6. Art. no. 02472-20. https://doi.org/10.1128/mBio.02472-20
- Pietrocola G., Nobile G., Rindi S., Speziale P. Staphylococcus aureus Manipulates Innate Immunity Through Own and Host-Expressed Proteases. Front. Cell. Infect. Microbiol., 2017, vol. 7. Art. no. 166. https://doi.org/10.3389/fcimb.2017.00166
- Popova T.G., Millis B., Bailey C., Popov S.G. Platelets, Inflammatory Cells, von Willebrand Factor, Syndecan-1, Fibrin, Fibronectin, and Bacteria Co-Localize in the Liver Thrombi of Bacillus anthracis-Infected Mice. Microb. Pathog., 2012, vol. 52, no. 1, pp. 1–9. https://doi.org/10.1016/j.micpath.2011.08.004
- Chung M.-C., Popova T.G., Jorgensen S.C., Dong L., Chandhoke V., Bailey C.L., Popov S.G. Degradation of Circulating von Willebrand Factor and Its Regulator ADAMTS13 Implicates Secreted Bacillus anthracis Metalloproteases in Anthrax Consumptive Coagulopathy. J. Biol. Chem., 2008, vol. 283, no. 15, pp. 9531–9542. https://doi.org/10.1074/jbc.M705871200
- Birnie E., Koh G.C.K.W., Löwenberg E.C., Meijers J.C.M., Maude R.R., Day N.P.J., Peacock S.J., van der Poll T., Wiersinga W.J. Increased von Willebrand Factor, Decreased ADAMTS13 and Thrombocytopenia in Melioidosis. PLoS Negl. Trop. Dis., 2017, vol. 11, no. 3. Art. no. e0005468. https://doi.org/10.1371/journal.pntd.0005468
- Alekseeva I.V., Urazgildeeva S.A. Functional Heterogeneity of the von Willebrand Factor: Pathogenetic Significance and Practical Aspects of Use in Cardiology. Cardiology, 2022, vol. 62, no. 7, pp. 54–60 (in Russ.). https://doi.org/10.18087/cardio.2022.7.n1641
- Chen J., Chung D.W. Inflammation, von Willebrand Factor, and ADAMTS13. Blood, 2018, vol. 132, no. 2, pp. 141–147. https://doi.org/10.1182/blood-2018-02-769000
|
Make a Submission







Vestnik of NArFU.
Series "Humanitarian and Social Sciences"
Forest Journal
Arctic and North
|