CC..png    

16plus.png

Legal and postal addresses of the publisher: 56 Uritskogo, Arkhangelsk, 163002, Russian Federation, Northern (Arctic) Federal University named after M.V. Lomonosov

Phone: (818-2) 21-61-21
E-mail: vestnik_med@narfu.ru
https://vestnikmed.ru/en/

ABOUT JOURNAL

Von Willebrand Factor as a Marker of Inflammation and Haemostasis (Review). С. 91-103

Версия для печати

Section: Review articles

Download (pdf, 0.5MB )

UDC

616-005.1

DOI

10.37482/2687-1491-Z232

Authors

Maria V. Kalashnikova* ORCID: https://orcid.org/0009-0003-2247-0425
Nushik S. Sarkisyan* ORCID: https://orcid.org/0000-0003-3512-5738
Aleksandr N. Kulichenko* ORCID: https://orcid.org/0000-0002-9362-3949

*Stavropol Plague Control Research Institute
(Stavropol, Russia)

Abstract

The review presents an analysis of literature data on the role of von Willebrand factor (VWF) in the system of haemostasis and inflammation as well as provides a pathophysiological assessment of the influence of VWF interaction with pathogenic microbiological agents on its metabolism and of the role of the metalloproteinase ADAMTS-13 in this process. The structure, functions and metabolism of VWF in pathological conditions are described. Data are presented indicating that the release of VWF from endothelial cells promotes the binding and decrease in the activity of ADAMTS-13, which regulates the functional activity of VWF. This, in turn, leads to the accumulation of ultralarge VWF multimers in the bloodstream, inducing the development of thrombosis. It is noted that biologically active substances involved in pathological processes act as stimulators of VWF exocytosis from Weibel–Palade bodies, which results in the development of microcirculatory disorders. The review aimed to assess the importance of VWF in the pathogenesis of inflammatory and thrombotic disorders. The sample consisted of original articles and short reports published from 2005 to 2022 and included in the PubMed, eLIBRARY.RU and Cyberleninka databases and addressing the pathophysiological role of VWF in maintaining systemic inflammation. The following search and selection strategy for scientific articles was applied using MeSH-indexed terms: von Willebrand factor [Supplementary Concept], ADAMTS-13 [MeSH Terms], systemic inflammation [MeSH Terms], and thrombotic disorders [MeSH Terms]. The analysis of scientific publications allows us to consider VWF as a marker of both haemostasis and inflammation. The influence of infectious agents on its metabolism is pointed out: during inflammation, bacteria associated with VWF multimers overcome the haemodynamic effects of the bloodstream, evade the immune cells and become fixed on the surface of the endothelium, causing endovascular disorders.

Keywords

von Willebrand factor, Weibel–Palade bodies, ADAMTS-13, immunothrombosis, systemic inflammation

References

  1. Sokolov E.I., Grishina T.I., Shtin S.R. Vliyanie faktora Villebranda i endotelina-1 na formirovanie tromboticheskogo statusa pri ishemicheskoy bolezni serdtsa [Effect of von Willebrand Factor and Endothelin-1 on Formation of Thrombotic Status in Patients with Ischemic Heart Disease]. Kardiologiya, 2013, vol. 53, no. 3, pp. 25–30.
  2. Avtaeva Yu.N., Melnikov I.S., Vasiliev S.A., Gabbasov Z.A. The Role of von Willebrand Factor in Hemostasis Pathology. Atherothrombosis, 2022, vol. 12, no. 2, pp. 79–102 (in Russ.). https://doi.org/10.21518/2307-1109-2022-12-2-79-102
  3. Margieva T., Sergeeva T. The Involvement of Endothelial Dysfunction Markers in the Pathogenesis of Chronic Glomerulonephritis. Curr. Pediatr., 2006, vol. 5, no. 3, pp. 22–30 (in Russ.).
  4. Verigo Ya.I., Demko I.V., Petrova M.M., Sobko E.A., Mamaeva M.G. Faktor Villebranda i ego rol’ v disfunktsii endoteliya pri ishemicheskoy bolezni serdtsa [Von Willebrand Factor and Its Role in Endothelial Dysfunction in Coronary Heart Disease]. Sibirskoe meditsinskoe obozrenie, 2014, no. 5, pp. 23–25.
  5. Gragnano F., Sperlongano S., Golia E., Natale F., Bianchi R., Crisci M., Fimiani F., Pariggiano I., Diana V., Carbone A., Cesaro A., Concilio C., Limongelli G., Russo M., Calabrò P. The Role of von Willebrand Factor in Vascular Inflammation: From Pathogenesis to Targeted Therapy. Mediat. Inflamm., 2017, vol. 2017, no. 1. Art. no. 5620314. https://doi.org/10.1155/2017/5620314
  6. De Ceunynck K., De Meyer S.F., Vanhoorelbeke K. Unwinding the von Willebrand Factor Strings Puzzle. Blood, 2013, vol. 121, no. 2, pp. 270–277. https://doi.org/10.1182/blood-2012-07-442285
  7. Kozlovskaya N.L., Khafizova E.Yu., Bobrova L.A., Bobkova I.N., Kuchieva A.M., Varshavskiy V.A., Stolyarevich E.S., Avdonin P.V., Zakharova E.V. Rol’ defitsita ADAMTS13 v razvitii trombozov mikrotsirkulyatornogo rusla pochek, ne assotsiirovannykh s tromboticheskoy trombotsitopenicheskoy purpuroy [The Role of ADAMTS13 Deficiency in the Development of Renal Microcirculation Thrombosis Not Associated with Thrombotic Thrombocytopenic Purpura]. Klinicheskaya nefrologiya, 2011, no. 6, pp. 25–31.
  8. Favaloro E.J., Henry B.M., Lippi G. Increased VWF and Decreased ADAMTS-13 in COVID-19: Creating a Milieu for (Micro)Thrombosis. Semin. Thromb. Hemost., 2021, vol. 47, no. 4, pp. 400–418. https://doi.org/10.1055/s-0041-1727282
  9. Babichev A.V. Rol’ endoteliya v mekhanizmakh gemostaza [The Role of Endothelium in Hemostasis Mechanisms]. Pediatr, 2013, vol. 4, no. 1, pp. 122–127.
  10. Avdonin P.V., Tsitrina A.A., Mironova G.Y., Avdonin P.P., Zharkikh I.L., Nadeev A.D., Goncharov N.V. Hydrogen Peroxide Stimulates Exocytosis of von Willebrand Factor in Human Umbilical Vein Endothelial Cells. Biol. Bull., 2017, vol. 44, no. 5, pp. 531–537. https://doi.org/10.1134/S106235901705003X
  11. Dal Lin C., Acquasaliente L., Iliceto S., De Filippis V., Vitiello G., Tona F. Von Willebrand Factor Multimers and the Relaxation Response: A One-Year Study. Entropy (Basel), 2021, vol. 23, no. 4. Art. no. 447. https://doi.org/10.3390/e23040447
  12. Divakova Yu.V., Koloskov A.V. Endothelial-Platelet Interaction in Sepsis. Gematologiya i transfuziologiya, 2022, vol. 67, no. 3, pp. 406–418 (in Russ.). https://doi.org/10.35754/0234-5730-2022-67-3-406-418
  13. Okhota S.D., Kozlov S.G., Avtaeva Yu.N., Mel’nikov I.S., Gabbasov Z.A. Faktor fon Villebranda i serdechnososudistaya patologiya [Von Willebrand Factor and Cardiovascular Pathology]. Ateroskleroz i dislipidemii, 2022, no. 4, pp. 10–24. https://doi.org/10.34687/2219-8202.JAD.2022.04.0002
  14. Khlynova O.V., Stepina E.A., Trapeznikova A.A. Vospalitel’nye zabolevaniya kishechnika i kardiovaskulyarnaya patologiya: patogeneticheskie vzaimosvyazi i vozrastnye osobennosti [Inflammatory Bowel Diseases and Cardiovascular Pathology: Pathogenetic Correlations and Age-Related Peculiarities]. Terapiya, 2022, no. 7, pp. 54–58. https://doi.org/10.18565/therapy.2022.7.54-58
  15. Chen J., Fu X., Wang Y., Ling M., McMullen B., Kulman J., Chung D.W., López J.A. Oxidative Modification of von Willebrand Factor by Neutrophil Oxidants Inhibits Its Cleavage by ADAMTS13. Blood, 2010, vol. 115, no. 3, pp. 706–712. https://doi.org/10.1182/blood-2009-03-213967
  16. Wang Y., Chen J., Ling M., López J.A., Chung D.W., Fu X. Hypochlorous Acid Generated by Neutrophils Inactivates ADAMTS13: An Oxidative Mechanism for Regulating ADAMTS13 Proteolytic Activity During Inflammation. J. Biol. Chem., 2015, vol. 290, no. 3, pp. 1422–1431. https://doi.org/10.1074/jbc.M114.599084
  17. Karki P., Birukov K.G. Rho and Reactive Oxygen Species at Crossroads of Endothelial Permeability and Inflammation. Antioxid. Redox Signal., 2019, vol. 31, no. 13, pp. 1009–1022. https://doi.org/10.1089/ars.2019.7798
  18. Avdonin P.P., Trufanov S.K., Tsitrina A.A., Rybakova E.Yu., Goncharov N.V., Avdonin P.V. Ispol’zovanie kon”yugirovannogo c fluorestsentnoy metkoy aptamera ARC1779 dlya otsenki vliyaniya H2O2 na ekzotsitoz faktora Villebranda [The Use of Fluorescently Labeled ARC1779 Aptamer for Assessing the Effect of H2O2 оn von Willebrand Factor Exocytosis]. Biokhimiya, 2021, vol. 87, no. 2, pp. 147–157. https://doi.org/10.31857/S0320972521020019
  19. Schwameis M., Schörgenhofer C., Assinger A., Steiner M.M., Jilma B. VWF Excess and ADAMTS13 Deficiency: A Unifying Pathomechanism Linking Inflammation to Thrombosis in DIC, Malaria, and TTP. Thromb. Haemost., 2015, vol. 113, no. 4, pp. 708–718. https://doi.org/10.1160/TH14-09-0731
  20. Reiter R.A., Varadi K., Turecek P.L., Jilma B., Knöbl P. Changes in ADAMTS13 (von-Willebrand-Factor-Cleaving Protease) Activity After Induced Release of von Willebrand Factor During Acute Systemic Inflammation. Thromb. Haemost., 2005, vol. 93, no. 3, pp. 554–558. https://doi.org/10.1160/TH04-08-0467
  21. Kremer Hovinga J.A., Zeerleder S., Kessler P., Romani de Wit T., van Mourik J.A., Hack C.E., ten Cate H., Reitsma P.H., Wuillemin W.A., Lämmle B. ADAMTS‐13, von Willebrand Factor and Related Parameters in Severe Sepsis and Septic Shock. J. Thromb. Haemost., 2007, vol. 5, no. 11, pp. 2284–2290. https://doi.org/10.1111/j.1538-7836.2007.02743.x
  22. Bockmeyer C.L., Claus R.A., Budde U., Kentouche K., Schneppenheim R., Lösche W., Reinhart K., Brunkhorst F.M. Inflammation-Associated ADAMTS13 Deficiency Promotes Formation of Ultra-Large von Willebrand Factor. Haematologica, 2008, vol. 93, no. 1, pp. 137–140. https://doi.org/10.3324/haematol.11677
  23. Bernardo A., Ball C., Nolasco L., Choi H., Moake J.L., Dong J.F. Platelets Adhered to Endothelial Cell-Bound Ultra-Large von Willebrand Factor Strings Support Leukocyte Tethering and Rolling Under High Shear Stress. J. Thromb. Haemost., 2005, vol. 3, no. 3, pp. 562–570. https://doi.org/10.1111/j.1538-7836.2005.01122.x
  24. Lyanguzov A.V., Sergunina O.Yu., Ignat’ev S.V., Kovtunova M.E., Kalinina S.L., Semakin A.S. Rol’ faktora fon Villebranda v razvitii sistemnogo vospaleniya, koagulopatii i organnykh disfunktsiy [The Role of von Willebrand Factor in the Development of Systemic Inflammation, Coagulopathy and Organ Dysfunctions]. Tromboz, gemostaz i reologiya, 2021, no. 3, pp. 4–11. https://doi.org/10.25555/THR.2021.3.0979
  25. Odintsova I.A., Mirgorodskaya O.E., Rusakova S.E., Gorbulich A.V., Gololobov V.G. Neutrophil Extracellular Traps: Structure and Biological Role. Genes Cells, 2022, vol. 17, no. 4, pp. 63–74 (in Russ.). https://doi.org/10.23868/gc352562
  26. Ward C.M., Tetaz T.J., Andrews R.K., Berndt M.C. Binding of the von Willebrand Factor A1 Domain to Histone. Thromb. Res., 1997, vol. 86, no. 6, pp. 469–477. https://doi.org/10.1016/S0049-3848(97)00096-0
  27. Brill A., Fuchs T.A., Savchenko A.S., Thomas G.M., Martinod K., De Meyer S.F., Bhandari A.A., Wagner D.D. Neutrophil Extracellular Traps Promote Deep Vein Thrombosis in Mice. J. Thromb. Haemost., 2012, vol. 10, no. 1, pp. 136–144. https://doi.org/10.1111/j.1538-7836.2011.04544.x
  28. Fuchs T.A., Brill A., Duerschmied D., Schatzberg D., Monestier M., Myers D.D. Jr., Wrobleski S.K., Wakefield T.W., Hartwig J.H., Wagner D.D. Extracellular DNA Traps Promote Thrombosis. Proc. Natl. Acad. Sci. USA, 2010, vol. 107, no. 36, pp. 15880–15885. https://doi.org/10.1073/pnas.1005743107
  29. Turner N.A., Moake J. Assembly and Activation of Alternative Complement Components on Endothelial Cell-Anchored Ultra-Large von Willebrand Factor Links Complement and Hemostasis-Thrombosis. PLoS One, 2013, vol. 8, no. 3. Art. no. e59372. https://doi.org/10.1371/journal.pone.0059372
  30. Feng S., Liang X., Kroll M.H., Chung D.W., Afshar-Kharghan V. Von Willebrand Factor Is a Cofactor in Complement Regulation. Blood, 2015, vol. 125, no. 6, pp. 1034–1037. https://doi.org/10.1182/blood-2014-06-585430
  31. Bettoni S., Galbusera M., Gastoldi S., Donadelli R., Tentori C., Spartà G., Bresin E., Mele C., Alberti M., Tortajada A., Yebenes H., Remuzzi G., Noris M. Interaction Between Multimeric von Willebrand Factor and Complement: A Fresh Look to the Pathophysiology of Microvascular Thrombosis. J. Immunol., 2017, vol. 199, no. 3, pp. 1021–1040. https://doi.org/10.4049/jimmunol.1601121
  32. Wu H., Jay L., Lin S., Han C., Yang S., Cataland S.R., Masias C. Interrelationship Between ADAMTS13 Activity, von Willebrand Factor, and Complement Activation in Remission from Immune-Mediated Thrombotic Thrombocytopenic Purpura. Br. J. Haematol., 2020, vol. 189, no. 1, pp. e18–e20. https://doi.org/10.1111/bjh.16415
  33. Nolasco J.G., Nolasco L.H., Da Q., Cirlos S., Ruggeri Z.M., Moake J.L., Cruz M.A. Complement Component C3 Binds to the A3 Domain of von Willebrand Factor. TH Open, 2018, vol. 2, no. 3, pp. e338–e345. https://doi.org/10.1055/s-0038-1672189
  34. Rawish E., Sauter M., Sauter R., Nording H., Langer H.F. Complement, Inflammation and Thrombosis. Br. J. Pharmacol., 2021, vol. 178, no. 14, pp. 2892–2904. https://doi.org/10.1111/bph.15476
  35. Gianni P., Goldin M., Ngu S., Zafeiropoulos S., Geropoulos G., Giannis D. Complement-Mediated Microvascular Injury and Thrombosis in the Pathogenesis of Severe COVID-19: A Review. World J. Exp. Med., 2022, vol. 12, no. 4, pp. 53–67. https://doi.org/10.5493/wjem.v12.i4.53
  36. Avdonin P.P., Tsvetaeva N.V., Goncharov N.V., Rybakova E.Yu., Trufanov S.K., Tsitrina A.A., Avdonin P.V. Faktor Villebranda v norme i pri patologii [Von Willebrand Factor in Health and Disease]. Biologicheskie membrany, 2021, vol. 38, no. 4, pp. 237–256. https://doi.org/10.31857/S0233475521040034
  37. Lüttge M., Fulde M., Talay S.R., Nerlich A., Rohde M., Preissner K.T., Hammerschmidt S., Steinert M., Mitchell T.J., Chhatwal G.S., Bergmann S. Streptococcus pneumoniae Induces Exocytosis of Weibel-Palade Bodies in Pulmonary Endothelial Cells. Cell. Microbiol., 2012, vol. 14, no. 2, pp. 210–225. https://doi.org/10.1111/j.1462-5822.2011.01712.x
  38. Jagau H., Behrens I.-K., Lahme K., Lorz G., Köster R.W., Schneppenheim R., Obser T., Brehm M.A., König G., Kohler T.P., Rohde M., Frank R., Tegge W., Fulde M., Hammerschmidt S., Steinert M., Bergmann S. Von Willebrand Factor Mediates Pneumococcal Aggregation and Adhesion in Blood Flow. Front. Microbiol., 2019, vol. 10. Art. no. 511. https://doi.org/10.3389/fmicb.2019.00511
  39. Freitas C., Assis M.-C., Saliba A.M., Morandi V.M., Figueiredo C.C., Pereira M., Plotkowski M.-C. The Infection of Microvascular Endothelial Cells with ExoU-Producing Pseudomonas aeruginosa Triggers the Release of von Willebrand Factor and Platelet Adhesion. Mem. Inst. Oswaldo Cruz, 2012, vol. 107, no. 6, pp. 728–734. https://doi.org/10.1590/S0074-02762012000600004
  40. Pappelbaum K.I., Gorzelanny C., Grässle S., Suckau J., Laschke M.W., Bischoff M., Bauer C., Schorpp-Kistner M., Weidenmaier C., Schneppenheim R., Obser T., Sinha B., Schneider S.W. Ultralarge von Willebrand Factor Fibers Mediate Luminal Staphylococcus aureus Adhesion to an Intact Endothelial Cell Layer Under Shear Stress. Circulation, 2013, vol. 128, no. 1, pp. 50–59. https://doi.org/10.1161/CIRCULATIONAHA.113.002008
  41. Na M., Hu Z., Mohammad M., Stroparo M.D.N., Ali A., Fei Y., Jarneborn A., Verhamme P., Schneewind O., Missiakas D., Jin T. The Expression of von Willebrand Factor-Binding Protein Determines Joint-Invading Capacity of Staphylococcus aureus, a Core Mechanism of Septic Arthritis. mBio, 2020, vol. 11, no. 6. Art. no. 02472-20. https://doi.org/10.1128/mBio.02472-20
  42. Pietrocola G., Nobile G., Rindi S., Speziale P. Staphylococcus aureus Manipulates Innate Immunity Through Own and Host-Expressed Proteases. Front. Cell. Infect. Microbiol., 2017, vol. 7. Art. no. 166. https://doi.org/10.3389/fcimb.2017.00166
  43. Popova T.G., Millis B., Bailey C., Popov S.G. Platelets, Inflammatory Cells, von Willebrand Factor, Syndecan-1, Fibrin, Fibronectin, and Bacteria Co-Localize in the Liver Thrombi of Bacillus anthracis-Infected Mice. Microb. Pathog., 2012, vol. 52, no. 1, pp. 1–9. https://doi.org/10.1016/j.micpath.2011.08.004
  44. Chung M.-C., Popova T.G., Jorgensen S.C., Dong L., Chandhoke V., Bailey C.L., Popov S.G. Degradation of Circulating von Willebrand Factor and Its Regulator ADAMTS13 Implicates Secreted Bacillus anthracis Metalloproteases in Anthrax Consumptive Coagulopathy. J. Biol. Chem., 2008, vol. 283, no. 15, pp. 9531–9542. https://doi.org/10.1074/jbc.M705871200
  45. Birnie E., Koh G.C.K.W., Löwenberg E.C., Meijers J.C.M., Maude R.R., Day N.P.J., Peacock S.J., van der Poll T., Wiersinga W.J. Increased von Willebrand Factor, Decreased ADAMTS13 and Thrombocytopenia in Melioidosis. PLoS Negl. Trop. Dis., 2017, vol. 11, no. 3. Art. no. e0005468. https://doi.org/10.1371/journal.pntd.0005468
  46. Alekseeva I.V., Urazgildeeva S.A. Functional Heterogeneity of the von Willebrand Factor: Pathogenetic Significance and Practical Aspects of Use in Cardiology. Cardiology, 2022, vol. 62, no. 7, pp. 54–60 (in Russ.). https://doi.org/10.18087/cardio.2022.7.n1641
  47. Chen J., Chung D.W. Inflammation, von Willebrand Factor, and ADAMTS13. Blood, 2018, vol. 132, no. 2, pp. 141–147. https://doi.org/10.1182/blood-2018-02-769000



Make a Submission


INDEXED IN: 

DOAJ_logo-colour.png

Elibrary.ru

logotype.png

infobaseindex

Логотип.png




Лань

OTHER NArFU JOURNALS: 

Vestnik of NArFU.
Series "Humanitarian and Social Sciences"

Forest Journal 
obl_les2023.jpg 

Arctic and North  

AiS.jpg